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Sampled-data Fuzzy Observer Design for an Attitude and Heading 
Reference System and Its Experimental Validation
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Abstract – In this paper, a linear matrix inequality-based sampled-data fuzzy observer design method 
is proposed based on the exact discretization approach. In the proposed design technique, a 
numerically relaxed observer design condition is obtained by using the discrete-time fuzzy Lyapunov 
function. Unlike the existing studies, the designed observer is robust to the uncertain premise variable 
because the fuzzy observer is designed under the imperfect premise matching condition, in which the 
membership functions of the system and observer are mismatched. In addition, we apply the proposed 
method to the state estimation problem of the attitude and heading reference system (AHRS). To do 
this, we derive a Takagi-Sugeno fuzzy model for the AHRS system, and validate the proposed method 
through the hardware experiment.

Keywords: Sampled-data fuzzy observer, Exact discretization approach, Discrete-time fuzzy 
Lyapunov function, Attitude and heading reference system (AHRS), State estimation

1. Introduction

The state estimation problem has been an important 
research topic for decades. In general, the state estimation
of the Takagi–Sugeno (T–S) fuzzy systems [1] has been 
carried out based on either a fuzzy filter-based method [2, 
3] or a fuzzy observer-based method [4, 5]. The fuzzy 
filter method provides a systematic approach to the state 
estimation method for the fuzzy model, and has gained 
much interest. However, it is disadvantageous in that it 
can be applied only when the given estimation model is 
asymptotically stable. As an alternative, fuzzy observer-
based methods have been actively studied. The most 
severe problem of the fuzzy observer approach is that the 
approach requires an accurate system model. In addition, 
there are few researches on the fuzzy observer design that 
are robust to the system disturbance or the measurement 
noise that occur frequently in the practical applications [10].

Recently, there has been an increasing demand for the 
digital computer-based control engineering. In a digital 
computer-based sensor system, the measurement model 
operates in the continuous-time domain, but a sensor 
provides measurements only at each sampling time [6]. 
Thus, these sampled-data systems contain both the 
continuous- and discrete-time state variables at the same 
time, which complicates the system analysis. To simplify 
the problem, in [8], the authors proposed an exact
discretization method for the sampled-data stabilization 

problem of the T-S fuzzy model. In this approach, the 
sampled-data system is discretized, and the system analysis 
is carried out in the discrete-time domain based on the 
resulting discretized system model [7-10]. Although this 
approach has been successfully adopted in analyzing 
sampled-data fuzzy systems, the studies on this approach 
have mainly focused on the controller design; thus, the 
study regarding the observer design are still lacking. 
Moreover, because the existing methods was derived based 
on the common quadratic Lyapunov function, the resulting 
stability conditions are numerically conservative [11].

In general, stabilization conditions for the fuzzy model 
has been derived based on the common quadratic Lyapunov
function. However, this provides numerically conservative 
results since a single Lyapunov function is determined for 
satisfying all fuzzy rules. To obtain relaxed results, the 
authors of [12] performed a study using a discrete-time 
fuzzy Lyapunov function. The fuzzy Lyapunov function is 
composed of multiple quadratic Lyapunov functions, and 
each quadratic Lyapunov function is related to each fuzzy 
rule. Moreover, the resulting stability condition contains 
more decision variables than that form the common 
quadratic Lyapunov function, which numerically relaxes 
the resulting stability conditions. After the work, a lot of 
studies have been carried out on the discrete-time fuzzy 
Lyapunov function-based stability analysis for discrete-
time fuzzy model [12-14]. However, there are still lacking 
studies on the stabilization of the sampled-data system 
based this Lyapunov function.

Apart from the above issues, it is notable that the 
demand for unmanned aerial vehicles (UAV) has been 
surprisingly increased for decades [15]. The most 
important technique in the actual implementation of the 
UAV is to obtain the attitude and heading of the aircraft. 
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Generally, the attitude and heading reference system 
(AHRS) are constructed via the sensor fusion algorithm 
using the acceleration, gyro, and magnetic field sensor data 
[16]. Various approaches have been carried out to develop 
the AHRS. Among them, the Kalman filter method [17-19] 
and the complementary filter method [20, 21] have been 
most widely studied, which are the most commonly used 
state estimation methods. The Kalman filter method 
provides theoretically an optimal state estimation solution, 
but computational demand is high. As a result, in many 
practical applications, the AHRS has been constructed 
using the complementary filter that is computationally 
relaxed. However, there is lacking studies on systematically 
determining the design parameters for both the Kalman 
and complementary filter, which makes the use of these 
methods difficult. Therefore, it is required to develop a 
filtering method that is easy to design and computationally 
relaxed.

Motivated by the above, in this paper, a linear matrix 
inequality (LMI)-based sampled-data fuzzy observer design
method is proposed based on the exact discretization 
approach. In the proposed design technique, a numerically 
relaxed observer design condition is obtained by using the 
discrete-time fuzzy Lyapunov function. Unlike the existing 
studies, the designed observer is robust to the uncertain 
premise variable because the fuzzy observer is designed 
under the imperfect premise matching condition, in which 
the membership functions of the system and observer are 
mismatched. In addition, we apply the proposed method 
to the state estimation problem of the AHRS. To this end, 
we derive a T–S fuzzy model for the AHRS system, and 
validate the proposed method through the hardware 
experiment.

The rest of the paper consists of the following sections: 
In the second section, the preliminaries for the sampled-
data fuzzy observer system is briefly reviewed. In Section 
3, the AHRS system model is introduced, and its fuzzy 
modeling procedure is provided. Section 4 provides the 
proposed LMI-based sampled-data observer design method. 
In the next section, the hardware experimental results are 
analyzed, and finally, the concluding remarks are given in 
Section 6.

2. Preliminaries

Throughout this paper, ℐ� represents the set, {1,2,… , �}, 
where � is a positive scalar. For any matrix �, we use 
the following shorthand notation He(�) = � + �� for 
simplicity. Moreover, �� represents the maximum 
eigenvalue of ��(�)�(�) for all �.

Now, consider the following T–S fuzzy system: 

�(̇�) = ���(�)��(�) + ���(�)��(�),

�(�) = ���(�) + ��(�),

																				�(�) = ���(�), (1)

where �(t) ∈ ℝ�� , �(�) ∈ ℝ�� , and �(�) ∈ ℝ�� are the 
state, measurement, and output vectors, respectively; 
�(�) ∈ ��

��[0,∞) and �(�) ∈ ��
��[0,∞) are disturbance 

and noise vectors, respectively; �(�(�)) = ∑ 	�
���

��(�)�� ∈ ℝ
��×�� and �(�(�)) = ∑ 	�

��� ��(�)�� ∈ ℝ
��×��

are the state and disturbance input matrices, respectively; 
�� ∈ ℝ

��×�� , �� ∈ ℝ
��×�� , and � ∈ ℝ��×�� are the 

measurement, output, and noise matrices, respectively; 
� ∈ ℐ�; and ��(�(�)) is the �th fuzzy weighting function, 
and satisfies the following conditions: 

����(�)� ∈ [0,1]	and	�	

�

���

��(�(�)) = 1,

where �(�) is a premise variable.
In this paper, we assume that the T–S fuzzy system (1) 

satisfies the following assumption: 

Assumption 1: The T–S fuzzy system (1) is observable, 
and the premise variable �(�) and the measurement vector 
�(�) are measurable. 

Under the assumption, we use the following sampled-
data fuzzy observer estimating �(�):

��̇(�) = ���(�)���(�) + ���(�)���(��) − ��(��)�,

									��(��) = ����(��) (2)

for � ∈ [��, ����), where �� = �ℎ is the �th sampling time; 
ℎ:= ���� − �� is a constant sampling period; ��(�) ∈ ℝ��

and ��(��) ∈ ℝ
�� are the state and output vectors for the 

observer; �(�(�)) = ∑ 	�
��� ��(�(�))�� ∈ ℝ

��×�� and 
�(�(�)) = ∑ 	�

��� ��(�(�))�� ∈ ℝ
��×�� are the state and 

observer gain matrices, respectively; and ��(�(�)) is the 
� th fuzzy weighting function for the sampled-data fuzzy 
observer.

Now, by defining �(�): = �(�) − ��(�), and from (1) and 
(2), we have the following estimation error dynamics:

�(̇�) = �(̇�) − ��̇(�)

									= ���(�)��(�) + ���(�)��(�)

													−����(�)���(�) + ���(�)���(��) − ��(��)��

									= ����(�)� − ���(�)� + ���(�)���(�)

													−���(�)���(�) + ���(�)��(�)

													−L��(�)�����(��) + ��(��) − ����(��)�

									= ���(�)��(�) − ���(�)����(��) + ���(�)��(�)

													−�(�(�))��(��) + {�(�(�)) − �(�(�))}�(�),

and by employing the notation, �(̅�) = �(�) − �(��), we 
can rewrite it as follows: 

�(̇�) = Λ��(�)��(��) + ���(�)��(̅�)

													+���(�)��(�) −Φ��(�)��(��)
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																														+Δ�(�)�(�), (3)

where Λ(�(�)) = �(�(�)) − �(�(�))�� ; Φ(�(�)) =
�(�(�))�; and Δ�(�) = �(�(�)) − �(�(�)).

3. The AHRS and Its Fuzzy Model

3.1 The system model

In this section, the quaternion-based kinematic model is 
employed for the attitude prediction. It has been well-
studied from researchers that the quaternion-based attitude 
kinematics model can be represented by the following 
nonlinear differential equation [19]: 

�

�̇�(�)
�̇�(�)
�̇�(�)
�̇�(�)

� =
�

�
�

0 −�(�) −�(�) −�(�)
�(�) 0 �(�) −�(�)
�(�) −�(�) 0 �(�)
�(�) −�(�) −�(�) 0

� �

��(�)
��(�)
��(�)
��(�)

�, (4)

where ��(�) , ��(�) , ��(�) , and ��(�) are quaternions; 
�(�), �(�), �(�) are measurements from the gyroscope in 
the �, �, and � axis, respectively.

We can represent the quaternion-based attitude 
kinematics model (4) as the following nonlinear state-space 
equation: 

																													�(̇�) = �(�)�(�), (5)

where 

�(�) =
1

2
⎣
⎢
⎢
⎡
0 −�(�) −�(�) −�(�)

�(�) 0 �(�) −�(�)

�(�) −�(�) 0 �(�)

�(�) −�(�) −�(�) 0 ⎦
⎥
⎥
⎤

;

and	�(�) = �

��(�)
��(�)
��(�)
��(�)

� = �

��(�)
��(�)
��(�)
��(�)

�.

Moreover, we confine the operating regions of �(�) , 
�(�), and �(�) as follows: 

�(�) ∈ �−��,���,
�(�) ∈ �−�� ,���, and

																																		�(�) ∈ [−�� ,��],   (6)

where ��, ��, and �� are given positive scalars.
By choosing the premise vector as �(�) = , 

[�(�) �(�) �(�)]� we can construct the following 
membership functions: 

��
�(�(�)) =

�(�) + ��

2��

, ��
�(�(�)) = 1 − ��

�(�(�)),

��
�(�(�)) =

�(�) +��

2��

, ��
�(�(�)) = 1 − ��

�(�(�)),

��
�(�(�)) =

�(�) +��

2��

, ��
�(�(�)) = 1 − ��

�(�(�)).

Summarizing the above, we have the following T–S 
fuzzy model with eight rules that represents (5) under (6): 

�(̇�) =�	

�

���

����(�)����(�),

where 

��(�(�)) = ��
�(�(�))��

�(�(�))��
�(�(�));

��(�(�)) = ��
�(�(�))��

�(�(�))��
�(�(�));

��(�(�)) = ��
�(�(�))��

�(�(�))��
�(�(�));

��(�(�)) = ��
�(�(�))��

�(�(�))��
�(�(�));

��(�(�)) = ��
�(�(�))��

�(�(�))��
�(�(�));

��(�(�)) = ��
�(�(�))��

�(�(�))��
�(�(�));

��(�(�)) = ��
�(�(�))��

�(�(�))��
�(�(�));

��(�(�)) = ��
�(�(�))��

�(�(�))��
�(�(�));

�� =
1

2
�

0 −�� −�� −��
�� 0 �� −��
�� −�� 0 ��
�� �� −�� 0

� ;															

and �� , �� , and �� are the � th elements of the following 
sets: 

� = {��, −��,��, −��,��, −��,��, −��};

� = {�� ,�� ,−�� , −�� ,�� ,�� , −�� , −��};

� = {�� ,�� ,�� ,�� , −�� ,−�� , −�� , −��},	

respectively.
The output model is chosen as 

�(�) = ���(�)																																				

																																	= �

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

� �

��(�)
��(�)
��(�)
��(�)

�. (8)

3.2 The measurement model

The accelerometer and magnetometer outputs are used in 
measurement model. It is well-known that the Euler angles 
can be computed by the following equation [20]:

				�

�(�)
�(�)
�(�)

� = �

atan(��(�)/��(�))

atan(−��(�)/���
�(�) + ��

�(�))

atan(��/��)

�, (9)

(7)
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where �(�), �(�), and �(�) are Euler angles in �, �, and 
� axis, respectively; ��(�) , ��(�) , and ��(�) are the 
accelerometer outputs of each axis; 

�� = −��(�) cos��(�)� + ��(�) sin��(�)� ;

�� = ��(�) cos��(�)� + �� sin��(�)� sin��(�)�

										+��(�)cos��(�)�sin��(�)�;

and ��(�) , ��(�) , and ��(� ) are the magnetometer
outputs of each axis.

Finally, the measurement output equation is as follows: 

�(�) = ���(�)																															

																																			= �

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

� �

��(�)
��(�)
��(�)
��(�)

�, (10)

where ��(�) with � ∈ ℐ� is the measurement output 
variable; ��(�) with � ∈ ℐ� is the quaternion, and has the 
following relation between the Euler angles: 

									�

��(�)
��(�)
��(�)
��(�)

� = �

������ + ������
������ − ������
������ + ������
������ − ������

�, (11)

where �� = cos(�(�)/2) ; �� = sin(�(�)/2) ; �� =
cos(�(�)/2); �� = sin(�(�)/2); �� = cos(�(�)/2) ; and 
�� = sin(�(�)/2).

Fig. 1. The overall configuration of the proposed AHRS 
system

3.3 The system configuration

The overall configuration of the proposed AHRS system 
is shown in Fig. 1. In the figure, ��, ��, and �� represent 
the accelerometer readings on each axis, �� , �� , and
�� are magnetometer readings on each axis, �, �, and �
are angular velocities on each axis, ��, ��, and �� mean 
the computed Euler angles by the accelerometer and 
magnetometer readings, and �� , �� , and �� are estimated 
Euler angles.

The gyroscope outputs on each axis are used to update 
the system model (7). The disturbance and the noise on the 
gyroscope readings are modeled as the disturbance vector, 
from which we can rewrite the system model (7) as follows: 

�(̇�) =�	

�

���

��(�(�)){���(�) + ���(�)},

where �� with � ∈ ℐ� represents the noise specifications of 
the gyroscope, and is assumed to be unknown but norm 
bounded.

Therefore, the premise variable �(�) is composed of the 
actual noise-free angular velocities. Unfortunately, the 
gyroscope in real world cannot provide the actual angular 
velocity. The premise variable used in the observer model 
(2) is assumed to be disturbed, and thus, we can model the 
fuzzy weighting function of the fuzzy observer as follows: 

��(�(�)) = ��(�(�) + Δ�(�)),

where Δ�(�) represents the noise on the gyroscope 
readings.

On the other hand, to operate the fuzzy observer (2), the 
measurement output on the �th sampling time, �(��), is 
required. In this paper, �(��) is updated by using (10) with 
(11) based on the accelerometer and magnetometer outputs.

Finally, the estimated quaternion values at � = ���� are 
obtained by integrating (2) as follows: 

��(����) = ��(��) + � 	
����

��

{�(�(�))��(�)

																			+�(�(�))(�(��) − ��(��))}��,

																					��(����) = ����(����), (13)

under the assumption that ��(��) is known. The integration 
can be done numerically by various approaches.

4. LMI-based Sampled-data Fuzzy Observer 

Design

In this section, we derive an LMI-based sampled-data 
fuzzy observer design method based on the exact 

(12)
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discretization approach. To this end, we use the following 
discrete-time fuzzy Lyapunov function: 

�(��) =�	

�

���

����(��)��
�(��)���(��)

																																= ��(��)�(�(��))�(��), (14)

where 0 ≺ �� = ��
� ∈ ℝ��×�� with � ∈ ℐ� is a positive 

definite matrix to be determined. Before proceeding, we 
introduce some lemmas and a proposition required in 
deriving the proposed observer design method: 

Lemma 1 [22] Given any function vector � , matrix 
� = �� ≻ 0, and ��, �� ∈ ℝ�� with �� < ��, the following 
holds: 

�� 	
��

��

�(�)���

�

� �� 	
��

��

�(�)���																	

													≤ (�� − ��) ∫ 	
��
��
��(�)��(�)��. (15)

Lemma 2 [23] Suppose the nonlinear system � =̇
�(�, �), where �: [�� , ����) × ℝ

� is piecewise continuous 
in � and locally Lipschitz in �, and the matrix � = �� ≻
0; then, the following inequality always holds: 

� 	
����

��

(�(�) − �(��))
����(�) − �(��)���					

										≤ ℎ� ∫ 	
����
��

�̇�(�)��(̇�)��, (16)

where ℎ = ���� − �� for any � ∈ ℤ��. 

Proposition 1 The equilibrium of the estimation error (3) 
is asymptotically stable under �(�) = �(�) = 0 whenever 
the equilibrium of �(��) is asymptotically stable. 

Proof. By integrating (3) and taking norm on both sides 
under �(�) = �(�) = 0, we have 

‖�(�)‖ = ‖�(��)‖ +� 	
�

��

{����(�)��‖�(�)‖						

																	+����(�)����‖�(��)‖ + ‖Δ(�)‖‖�(�)‖}��

													≤ (1 + ℎ�)‖�(��)‖ +� 	
�

��

��‖�(�)‖�� + ℎ����

													= �(1 + ℎ�)� + (ℎ��)
� ��

��
�(��)

��

																						+∫ 	
�

��
��‖�(�)‖��, (17)

where � = sup��−�(�(�))��� ; �� = sup�‖�(�(�))‖ ; 
�� = sup�‖Δ(�)‖; and �� = sup�‖�(�)‖.

Finally, an application of the Gronwall-bellman 
inequality to ‖�(�)‖ constructs the following inequality: 

‖�(�)‖ ≤ �(1 + ℎ�)� + (ℎ��)
� ��

��
�(��)

��exp(��ℎ).

Therefore, ∥ �(�) ∥→ 0 if ∥ �(��) ∥→ 0. This concludes 
the proof. 

The objective of this section is to solve the following 
problem: 

Problem 1 For a given sampling period ℎ , find a 
observer gain matrix such that the T–S fuzzy system (1) 
and the sampled-data fuzzy observer (2) satisfies the 
following conditions:
1. The equilibrium of the error dynamics (3) is 

asymptotically stabilized under �(�) = �(�) = 0. 
2. The estimation error �(�) satisfies the following ��

criterion under the zero initial condition: 

� 	
�

�

��(�)��(�)�� ≤ � 	
�

�

{��
���(�)�(�)																									

																																							+��
���(�)�(�)

																																							+��
���(�)�(�)}��, (18)

where � is a given positive definite matrix of an 
appropriate dimension; and �� , �� , and �� are positive 
scalars.

The solution to Problem 1 is summarized in the 
following theorem: 

Theorem 1 Suppose that there exist positive definite 
matrices �� and �� with � ∈ ℐ� , a symmetric matrix � , 
and any matrix ��� with � ∈ ℐ� such that the following 
optimization problem composed of LMI conditions is 
satisfied: 

min
�
(��

� + ��
� + ��

�), � ∈ {�� , �� , �, ���} (19)

subject to

																			�
Ψ�� ∗

� −��
� ≺ 0		for		(�, �) ∈ ℐ� × ℐ� (20)

																			�
��
�

��
� ∗

���
� �

� ≻ 0			for		� ∈ ℐ� , (21)

																			���
� � ∗
� �

� ≻ 0, (22)

where �� and �� are given positive scalars; � is the 
identity matrix of an appropriate dimension; 

Ψ�� = �

���
��

∗ ∗

���
��

���
��

∗

���
��

���
��

���
��

� ;

���
��
= �(�) + � +He���� − ������;

���
��
= �� + �(�) + ����� − ������ − ��;
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���
��
= ℎ�� + ℎ�{�(�) + ��} − 2��;

���
��
= ���� − ������ + ���

��+�;

���
��
= ���

� −�;

���
��
= He����� − �� + �;

	� = �
�� �� �
�� �� �
�� �� �

� ; �� =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
��
�

��
� ∗ ∗

0
��
�

��
� ∗

0 0
��
�

����⎦
⎥
⎥
⎥
⎥
⎥
⎤

;

ℎ is the constant sampling period; � and � are given 
positive scalars; and � is a given positive definite matrix.

Then, the error dynamics (3) satisfies the conditions of 
Problem 1, and the maximum eigenvalues of ��� and 
��
��� with � ∈ ℐ� are less than �� and ��, respectively.

Finally, the observer gain matrix is obtained as follows: 

																																						�� = ������ .				 (23)

Proof. Based on the discrete-time fuzzy Lyapunov 
function (14), we have 

Δ�(��) = ��(����)���(����)��(����)													

																															−��(��)�(�(��))�(��), (24)

where �(�(����)) = ∑ 	�
��� ��(�(����))��.

The exactly discretized form of the error dynamics (3) 
becomes 

				�(����) = �(��) +� 	
����

��

�(̇�)��.

On the other hand, the following is clear: 

0 = � 	
����

��

�̅�(�)���(��)��(̅�)��

																−� 	
����

��

�̅�(�)���(��)��(̅�)�τ

Now, by substituting and adding (25) and (26), 
respectively, into (24), we obtain 

Δ�(��) = ��(��) +� 	
����

��

�(̇�)���

�

���(����)�

																		× ��(��) + � 	
����

��

�(̇�)���

																		−��(��)���(��)��(��)										

																							−� 	
����

��

�̅�(�)���(��)��(̅�)��

																		+� 	
����

��

�̅�(�)���(��)��(̅�)��

													= ��(��)����(����)� − ���(��)���(��)

																	+2��(��)���(����)� �� 	
����

��

�(̇�)d��

																	−� 	
����

��

�̅�(�)���(��)��(̅�)��

																+ �� 	
����

��

�(̇�)���

�

���(����)�				

																								× �� 	
����

��

�(̇�)���

																							+� 	
����

��

�̅�(�)�(�(��))�(̅�)��.

From Lemma 1 and Lemma 2, (27) is majorized by the 
following: 

Δ�(��) = ��(��)����(����)� − ���(��)���(��)

																		+2��(��)���(����)� �� 	
����

��

�(̇�)���

																		−� 	
����

��

�̅�(�)���(��)��(̅�)��

																	+ℎ� 	
����

��

�̇�(�)���(����)��(̇�)��

															+ℎ�� 	
����

��

�̇�(�)�(�(��))�(̇�)��.

From the error dynamics (3), the following holds for any 
symmetric matrix � of an appropriate dimension: 

0 = 2� 	
����

��

{��(̅�) + ���(��) + ���(̇�)}�

								× {−�(̇�) + Λ(�(�))�(��) + �(�(�))�(̅�)

								+���(�)��(�) −Φ��(�)��(��)

																			+Δ�(�)�(�)}��, (29)

where � and � are given positive scalars.
Before proceeding, we introduce the following term: 

� 	
����

��

Γ(�)��,

where Γ(�) = ��(�)��(�) − ��
���(�)�(�) − ��

���(�) ×
�(�) − ��

���(�)�(�); �� , �� , and �� are positive scalars 
to be determined; and � is a given positive definite matrix 
of an appropriate dimension.

Now, by adding (29) and (30) into (28), we have 

(25)

(26)

(27)

(28)

(30)
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Δ�(��) +� 	
����

��

Γ(�)�� ≤ � 	
����

��

Θ(�)��,

where 

Θ(�) =
1

ℎ
��(��)����(����)� − ���(��)���(t�)

													+2��(��)���(����)��(̇�) − �̅�(�)���(��)��(̅�)

													+�̇�(�)�ℎ���(����)� + ℎ����(��)���(̇�)

													+2{��(̅�) + ���(��) + ���(̇�)}�

													× �−�(̇�) + Λ��(�)��(��) + ���(�)��(̅�)�

													+2{��(̅�) + ���(��) + ���(̇�)}�

													× ����(�)��(�) −Φ��(�)��(��) + Δ�(�)�(�)�

													+��(�)��(�) − ��
���(�)�(�)

													−��
���(�)�(�) − ��

���(�)�(�),

from which we know that 

Δ�(��) +� 	
����

��

Γ(�)�� ≤ 0

holds if 

																			Θ(�) ≤ 0	 (32)

for � ∈ [�� , ����) is satisfied.
On the other hand, considering that 

��(����) = ��(��) + � 	
����

��

�̇�(�)��

																		≤ ��(��) +� 	
����

��

����

																																							= ��(��) + ℎ�� , (33)

where �� with � ∈ ℐ� is a given positive scalar that 
satisfies |�̇�(�)| ≤ �� for all �, we obtain 

���(t���)� =�	

�

���

��(����)�� 						

																								≤ �	

�

���

{��(��) + ℎ��}��

																																													= �(�(��)) + ℎ�(�), (34)

where �(�) = ∑ 	�
��� ����.

Moreover, we introduce the following matrix inequality: 

												2��� ≤ ���� + ������, (35)

where � and � are any matrices, and � is a given 
positive scalar.

Then, from (35), we know that 

2{��(̅�) + ���(��) + ���(̇�)}� 																																				

					× {�(�(�))�(�) −Φ(�(�))�(��) + Δ�(�)�(�)} (36)

≤ {��(̅�) + ���(��) + ���(̇�)}�(��� + ��� + ���)

			× {��(̅�) + ���(��) + ���(̇�)}

			+��
����(�)Δ�

�(�)Δ�(�)�(�)

			+��
����(�)����(�)����(�)��(�)

									+��
����(�)Φ�(�(�))Φ(�(�))�(�) (37)

holds with given positive scalars ��, ��, and ��.
From (34) and (37), (32) is further majorized by 

Θ(�) ≤
1

ℎ
��(��)����(��)� + ℎ�(�) − ���(��)���(��)

														+2��(��)����(��)� + ℎ�(�)��(̇�)

														+�̇�(�)�ℎ���(��)� + ℎ��(�)

+ ℎ����(��)���(̇�)

														−�̅�(�)���(��)��(̅�)

														+2{��(̅�) + ���(��) + ���(̇�)}�

														× �−�(̇�) + Λ��(�)��(��) + ���(�)��(̅�)�

														+{�(̅�) + �(��)}
��{�(̅�) + �(��)}

														+{��(̅�) + ���(��) + ���(̇�)}�

														× (��� + ��� + ���)

														× {��(̅�) + ���(��) + ���(̇�)}

															+��(�){��
��Δ�

�(�)Δ�(�) − ��
��}�(�)

														+��(�)���
������(�)����(�)� − ��

����(�)

														+��(�)���
��Φ���(�)�Φ��(�)� − ��

����(�)

																	≤ 0,																																																	         (38)

where �(�) = �(̅�) + �(��).
Thus, the sufficient condition for guaranteeing (38) is as 

follows: 

�

�(��)
�(̇�)
�(̅�)

�

�

�Ψ(�) +�������

�(��)
�(̇�)
�(̅�)

� ≤ 0, (39)

																																												��
���� − ��

� = 0, (40)

																																																��
���� − ��

� = 0, (41)

																																																��
���� − ��

� = 0. (42)

where 

Ψ(�) = �
��� ∗ ∗
��� ��� ∗
��� ��� ���

� ;

	��� = �(�) + � +He���Λ��(�)��;

	��� = ���(��)� + ℎ�(�) + ���Λ��(�)� − ��;

	��� = ℎ���(��)� + ℎ���(�) + ���(��)��;

(31)
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	��� = ��Λ��(�)� + �����(�)� + �;

	��� = �����(�)� − �;

	��� = He������(�)�� − ���(��)� + �;

		� = �
�� �� �
�� �� �
�� �� �

� ; 	and	�� = �
��� ∗ ∗
0 ��� ∗
0 0 ���

�.

Now, by applying the Schur complements on (39), we 
have 

											�
Ψ(�) ∗

� −��
��� ≺ 0; (43)

thus, we know that Δ�(��) + ∫ 	
����
��

Γ(�)�� ≤ 0 is 

satisfied if (43) holds.
From (40), (41), and (42), we have 

��
�� =

��
�

��
, ��

�� =
��
�

��
, and	��

�� =
��
�

����
, (44)

because of �� = ����, from which we obtain 

��
�� = �

��
��� ∗ ∗

0 ��
��� ∗

0 0 ��
���

�								

																																	=

⎣
⎢
⎢
⎢
⎢
⎡
��
�

��
� ∗ ∗

0
��
�

��
� ∗

0 0
��
�

��⎦
⎥
⎥
⎥
⎥
⎤

= �� . (45)

Finally, without the shorthand notation and using (45), 
we can rewrite (43) as follows: 

�	

�

���

�	

�

���

��(��)��(�) �
Ψ�� ∗

� −��
� ≺ 0,

from which we obtain the LMI given in (20).
Moreover, supposed that the following holds: 

										�
�

���(�)�(�)�
�

� ≺
��
�

��
� (47)

then, we have the following form the Schur complements: 

											�

��
�

��
� ∗

��(�)�
�

� �

� ≻ 0. (48)

Now, by applying the congruence transformation with 

d���{N
�

�, �}, we have 

												�
��
�

��
� ∗

���(�) �
� ≻ 0, (49)

which implies the LMI condition (21).
In addition, by applying the Schur complements on 

													��� ≺ ��
� �, (50)

we have the LMI condition (22).
Thus, if (21) and (22) are satisfied, the maximum 

eigenvalues of �(�) and � are less than �� and �� , 
respectively.

Furthermore, we know that the following holds if the 
LMI (20) are satisfied: 

Δ�(��) +� 	
����

��

Γ(�)�� ≤ 0,

which implies that the equilibrium of (3) is asymptotically 
stabilized from Proposition 1.

Moreover, summing (51) from � = 0 to � = ∞ yields 

�(∞) − �(0) +� 	
�

�

Γ(�)�� ≤ 0.

Because �(∞) → 0, we conclude that if there exists a 
solution to the LMI-based optimization problem (19), the 
sampled-data fuzzy observer (2) achieves the conditions of 
Problem 1. 

Remark 1 The major distinguishable features of the 
proposed sampled-data fuzzy observer design method 
compared with the existing approaches are as follows:

1. An LMI-based optimization problem is proposed 
based on the discrete-time fuzzy Lyapunov function, by 
which a numerically relaxed observer design conditions are 
obtained. 

2. The observer gain matrix is determined using the norm
upper bounds of the system disturbance and measurement 
noise. 

3. The designed observer is robust to the uncertain 
premise variable by allowing the membership function of 
the observer to be different from that of the system. 

5. Experimental Results

Throughout the section, we design the sampled-data 
fuzzy observer (2) using Theorem 1, and validate its 
performance using the commercial AHRS unit. This 
section consists of two subsections; in the first subsection, 
the fuzzy observer gain matrix is determined by numerically
solving the optimization problem with the LMIs. The LMI 
conditions was solved via YALMIP and SeDuMi [24, 25] 
running on MATLAB 2016a. After constructing the fuzzy 
observer, in the next subsection, we perform real-time 
experiments, by which the performance of our approach is 
validated.

(46)

(51)
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5.1 Observer design

The first step is to determine parameters (�, �,�,
ℎ, ��, ��, �� , �� , ��) . The free parameters are chosen as 
(�, �,�, �� , ��) = (0.1,0.1, �, 10,100) . Moreover, the 
sampling period is set to ℎ = 2.5�� = 400�� , and the 
operating regions (6) is confined by �� = 4rad/sec , 
�� = 4rad/sec , and �� = 2rad/sec . The remained 
parameters �� , �� , and �� are tuned according to the 
sensor noise and the disturbance on the experimental setup.

By numerically solving the optimization problem (19) 
with LMIs (20)-(22), we obtain the following observer gain 
matrices: 

�� = �

2.4099 0.0000 −0.0000 −0.0000
0.0000 2.4099 0.0000 −0.0000
−0.0000 0.0000 2.4099 0.0000
−0.0000 −0.0000 0.0000 2.4099

�,

�� =

⎣
⎢
⎢
⎢
⎡
2.4181 0.0000 −0.0000 −0.0000
0.0000 2.4181 −0.0000 0.0000
−0.0000 −0.0000 2.4181 0.0000
−0.0000 0.0000 0.0000 2.4181

⎦
⎥
⎥
⎥
⎤

,

�� = �

2.4126 0.0000 −0.0000 −0.0000
0.0000 2.4126 0.0000 −0.0000
−0.0000 0.0000 2.4126 0.0000
−0.0000 −0.0000 0.0000 2.4126

�,

�� =

⎣
⎢
⎢
⎢
⎡
2.4205 0.0000 −0.0000 −0.0000
0.0000 2.4205 0.0000 −0.0000
−0.0000 0.0000 2.4205 0.0000
−0.0000 −0.0000 0.0000 2.4205

⎦
⎥
⎥
⎥
⎤

,

�� = �

2.4099 0.0000 −0.0000 −0.0000
0.0000 2.4099 0.0000 −0.0000
−0.0000 0.0000 2.4099 0.0000
−0.0000 −0.0000 0.0000 2.4099

�,

�� = �

2.4181 0.0000 −0.0000 −0.0000
0.0000 2.4181 −0.0000 0.0000
−0.0000 −0.0000 2.4181 0.0000
−0.0000 0.0000 0.0000 2.4181

�,

�� = �

2.4126 0.0000 −0.0000 −0.0000
0.0000 2.4126 0.0000 −0.0000
−0.0000 0.0000 2.4126 0.0000
−0.0000 −0.0000 0.0000 2.4126

�,

�� = �

2.4205 0.0000 −0.0000 −0.0000
0.0000 2.4205 0.0000 0.0000
−0.0000 0.0000 2.4205 0.0000
−0.0000 0.0000 0.0000 2.4205

�.

As can be seen from the resulting gain matrices, the
maximum eigen values for the resulting observer gains are 
less than ��.

5.2 Experimental results

The experiments were carried out using MTi-30 AHRS 
from Xsens, from which we can obtain both calibrated 
inertial sensor data and Euler angles at the same time up 
to 400��. In this experiment, it is assumed that the Euler 

Fig. 2. The 3-axis motion table

Table 1. Comparison of the estimation performance

Methods
RMS(ROLL)
STD(ROLL)

RMS(Pitch)
STD(Pitch)

RMS(YAW)
STD(Yaw)

Proposed
0.3218
0.2839

0.4204
0.3643

4.8338
4.5766

Madgwick et al. 
[16]

0.4148
0.4026

0.4845
0.4673

2.0804
2.062

angle from MTi-30 AHRS is true angle of the sensor. The 
proposed sampled-data fuzzy observer computes the 
estimated Euler angles using the raw sensor data obtained 
by MTi-30 AHRS. The performance of the proposed 
method is verified by analyzing the error between the 
Euler angles acquired by the proposed method and MTi-30 
AHRS.

To this end, we built the 3-axis motion table as shown 
in Fig. 2. In this experiment, each axis turns from 
−40deg to 40deg for five times using the 3-axis motion 
table. Fig. 3 shows the raw sensor data acquired by MTi-30 
AHRS. Due to the weak coupling between the axes of 
the experimental equipment, severe disturbances affect 
on each sensor. Fig. 4 shows the Euler angles acquired 
by the proposed method, the conventional approach [16], 
and MTi-30 AHRS. Moreover, Table 1 summarizes the 
error statistics. As can be seen from the results, although 
there is a strong disturbance, sufficient Roll and Pitch 
estimation performance can be obtained through the 
proposed method. Moreover, the proposed method 
provides better performance than the conventional 
approach for Roll and Pitch estimation. However, the 
Yaw estimation performance of the proposed method is not 
appropriate. The reason is as follows: In the measurement 
Eq. (9), Roll and Pitch angles measured by the acceleration 
are used to compute Yaw measurement. Since there is a 
severe disturbance in the experimental environment, the 
Roll and Pitch measurements are inaccurate; thus, the Yaw 
measurement is unreliable. However, this problem can be 
easily solved by the following methods: The first method is 
to divide the estimation procedure into the two stages. In 
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the first stage, the state estimation results for the Roll 
and Pitch are obtained, and then the results are used as 
measurements at the Yaw estimation stage. The block 
diagram for this proposed two-step procedure is shown in 
Fig. 5. The second method is to apply a low-pass filter to 
the acceleration sensor data to attenuate the effect on the 
disturbance. When we applied the two-step procedure, the 
Yaw estimation performance can be enhanced. The RMS 
and standard variance of the improved Yaw estimation are 
2.3497 and 2.3362, respectively, which means that the 
improvement rate is 51.39%.

Fig. 4. The Euler angles obtained by MTi-30 AHRS (solid 
line), the proposed method (dashed-line), and the 
conventional method (dash-dotted line)

Fig. 5. The block diagram for the proposed two-step 
procedure

5. Conclusion

Throughout the paper, the exact discretization approach 
to the LMI-based sampled-data fuzzy observer design 

Fig. 3. The raw sensor readings acquired by MTi-30 AHRS
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method has been dealt with. The resulting observer design 
condition is numerically relaxed because it was derived 
based on the discrete-time fuzzy Lyapunov function that 
contains more decision variables than the conventional 
common quadratic Lyapunov function. Moreover, the 
observer used in this paper is robust to the uncertain 
premise variable because the membership function of the 
observer can be freely designed independently from the 
system membership function. In addition, we derived the 
fuzzy model for the AHRS, and applied the proposed 
design technique to the state estimation problem for the 
AHRS. Finally, throughout the hardware experiment, we 
analyzed the state estimate performance of the proposed 
method and compared it with the conventional approach, 
by which we concluded that the resulting observer was 
well constructed.
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