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Abstract: This paper proposes to improve the performance of a strap down inertial navigation 
system using a foot-mounted low-cost inertial measurement unit/magnetometer by configuring an 
attitude and heading reference system. To track position accurately and for attitude estimations, 
considering different dynamic constraints, magnetic measurement and a zero velocity update 
technique is used. A conventional strap down method based on integrating angular rate to 
determine attitude will inevitably induce long-term drift, while magnetometers are subject to short-
term orientation errors. To eliminate this accumulative error, and thus, use the navigation system 
for a long-duration mission, a hybrid configuration by integrating a miniature micro 
electromechanical system (MEMS)-based attitude and heading detector with the conventional 
navigation system is proposed in this paper. The attitude and heading detector is composed of 
three-axis MEMS accelerometers and three-axis MEMS magnetometers. With an absolute 
algorithm based on gravity and Earth’s magnetic field, rather than an integral algorithm, the attitude 
detector can obtain an absolute attitude and heading estimation without drift errors, so it can be 
used to adjust the attitude and orientation of the strap down system. Finally, we verify (by both 
formula analysis and from test results) that the accumulative errors are effectively eliminated via 
this hybrid scheme.     

 
Keywords: Zero velocity update, ZUPT, Zero altitude update, Pedestrian navigation, Kalman filter, Dynamic 

constraint  
 
 
1. Introduction 

A navigation system that tracks the position and 
heading of pedestrians in indoor/outdoor environments 
using a foot-mounted inertial sensor has numerous 
applications [1]. These systems do not require any 
infrastructure other than the inertial measurement unit 
(IMU) itself, which makes them the preferred option for 
navigation in many scenarios, e.g., position tracking, 
search-and-rescue operations, and pedestrian guidance. 
With the development of miniature micro 
electromechanical systems (MEMS), the inertial 
navigation system’s algorithm can estimate the orientation 
result from an accelerometer reading (yaw, pitch, and roll) 
for attitude initialization and update. However, because of 

sensor noise and bias in the low-cost inertial sensors, such 
orientation suffers from drift errors that degrade the long-
term performance requirement. The main concern of a 
researcher in this area is to achieve a long-term, stable 
navigation solution. To do so, it is suitable to integrate 
measurements from an IMU carried by the pedestrian. 
These long-term drift problems can be mitigated by 
configuring the attitude and heading reference system 
(AHRS). We mechanize the value measured by the 
accelerometer and magnetometer to get the attitude and 
position changes of the foot. A strap down inertial 
navigation system (SINS) algorithm using a low-cost 
MEMS is not enough to satisfy attitude and heading 
performance requirements. 

Filtering techniques with pedestrian dynamic 
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constraints are used to build an AHRS based on a system-
and-measurement model. For the nonlinear state, an 
extended Kalman filter is used. Zero velocity update 
(ZUPT) reduces the IMU velocity drift. In addition, a zero 
height constraint is used to reduce position drift by 
clamping the mechanization result to ground at the end of 
each step, except on stairs. Zero velocity update detection 
implementation is a threshold value of the total 
acceleration vector magnitude. A pitch change magnitude 
threshold was used on stairs.  

2. Related Work 

In personal navigation, the foot alternates between 
stance and swing phases [1], and zero velocity update is 
applied as a navigation error corrector. ZUPT is applied as 
a pseudo measurement update inside the extended Kalman 
filter (EKF). However, as emphasized by both Ojeda et al. 
[3] and Bebek et al. [4], reset this pseudo-measurement 
ZUPT to zero during zero velocity. In this way, updating 
the zero velocity during the stance phase itself does not 
improve the entire movement of the pedestrian-movement 
foot-mounted inertial navigation. For instance, Jun’s 
pedestrian dead reckoning (PDR) system considers the 
heel-strike and toe-off phases when using a foot-mounted 
IMU [11]. Extensive research has been performed on how 
to use ZUPT for accurate position estimation. However, 
simply resetting the integrated velocity to zero during zero 
velocity phases does not only improve the performance of 
PDR. Yun et al. [5] further improved the idea of ZUPT and 
applied a time-variant acceleration bias error to revise the 
acceleration in the swing phases. Similarly, Schepers et al. 
[23] proposed using high-pass filters to remove bias error. 
The integrated velocity and the integrated position were 
high-pass filtered by first-order recursive Butterworth 
filters to alleviate the integration drift, but it is quite 
challenging to determine the cutoff frequencies of the 
filters, which makes this method not straightforward 
enough to use in practice. However, all the aforementioned 
acceleration double-integration methods assumed that the 
gravitational acceleration could be removed from the 
accelerometer signal to obtain the motion acceleration, but 
such procedures are extremely difficult due to sensor bias 
and noise. 

This paper presents a methodology for the technique, 
performs an analysis, and gives the testing results of the 
system based on the extended Kalman filter. Our approach 
in this paper uses a zero height constraint, magnetometer, 
and EKF. 

3. Basic Navigation Equation 

Inertial measurements are used to compute basic 
navigation solutions. In addition to this, magnetic field 
measurement improves heading accuracy. In this section, a 
navigation equation is introduced for both the inertial 
sensor and magnetometer. 

3.1 Inertial Navigation System (INS) 
The combination of an inertial measurement unit and a 

navigation processor to do the computation can be 
collectively known as an inertial navigation system (INS). 
The INS estimates position, velocity, and attitude by using 
accelerometer and gyroscope readings. The sensor data are 
related to the coordinate frame of the IMU, which is called 
the IMU frame. In the first step, the bias-compensated 
accelerations of the IMU frame, which are taken at discrete 
time k, are first transformed into building the local 
navigation frame in order to remove gravity from the 
sensor data. The discrete navigation equation is as follows: 
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 (1) 

 
where np  is the position,  nv  is the velocity, nψ  is the 
attitude, n

bC is the direction cosine matrix, n
bE  is the 

rotation rate transformation matrix from the body frame to 
the navigation frame, bf  is the specific force in the body 
frame, ng  is gravity, bω  is the angular rate in the body 
frame, kΔ  is the time interval, and w is the process noise 
of the INS. 

3.2 Zero Height Constraint 
An inertial navigation system has inherent drift error in 

its navigation solutions unless correction information is 
provided by an external system. There are several 
techniques to reduce this error, such as zero velocity 
update, zero angular rate update, and heading update. This 
paper focuses on pedestrian kinematic constraints, called 
zero height constraint (ZHC).  

In ZHC, the basic assumption is that height can be 
estimated from the floor level. In reality, these constraints 
are acceptable for a person who walks on the same zero 
floor, so we set the altitude equal to zero in every stance 
phase, as shown below: 

 
 0b

zp                                (2) 

3.3 Zero Velocity Update 
The other most widespread PDR constraint is provided 

by zero velocity update. The constraints can be regarded as 
a ZUPT for the velocity of the pedestrian in the plane 
perpendicular to the forward direction (x-axis), the 
velocities (y-axis), and vertical (z-axis) are always 
assumed to be zero in the stance phase, as shown below: 

 
 0b
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 0b
xv                 (3)       
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A coordinate transformation matrix ( b
nC ) is used to 

convert the position and velocity from the navigation 
frame to the body frame, and it is expressed as follows: 

 
  b b n

nv C v=% %                       (4) 
 b b n

np C p= %              (5) 
 
The x-, y-, and z-axis velocities computed using (3) 

should be zero, because the foot is at a standstill in (2). 
However, they are not exactly zero because of the velocity 
and attitude estimation errors of the INS. These errors can 
be estimated and corrected by using a Kalman filter. Three 
velocity residuals from the ZUPT are considered as 
measurements for the navigation filter. The equation for 

the residuals (r) is expressed as follows: 
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Similarly, for zero height constraint, the z-axis 

component position that could be estimated from the floor 
level, computed using (1), should be zero because of the 
ZHC in (5). 

 
 ˆ ˆb b b b

z z z zr p p p pdé ù é ù= = - =ë û ë û            (7) 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig. 1. Raw (a) accelerometer; (b) gyroscope, (c) magnetometer data. 
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This residuals are given as input to the EKF to improve 
the position drift.  

The Eq. (2) for ZHC were presented in the previous 
section. However, this technique is not vulnerable to error 
in heading estimation. Therefore, the heading–attitude 
angle is computed from the corrected magnetic readings 
and acceleration angle. The magnetometer-based heading 
estimation is relatively stable in tests over longer hours. 
Prior to applying the heading estimation, calibration is 
needed. Magnetometer measurement provides the 
horizontal component of the magnetic field component, 
which is used for computing magnetic north, which differs 
from true north. First, the magnetometer attached to the 
foot is not always horizontal to Eearth’s local plane (see 

Fig. 3). The accelerometer is used to measure the tilt angle 
roll and pitch with respect to the horizontal plane, which 
makes heading estimation difficult. When the foot is 
stationary, the transformed acceleration of the sensor body 
reading b into the navigation frame of reference is given 
below:  
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 (8) 

 
where bf  is the three accelerometer measurements in x, y, 

Table 1. MTw sensor specifications.   

Tracker Placement Easy fastening with velcro straps   
Orientation 1000 Hz   

Static Accuracy (Roll/Pitch)    
(Heading) 0.5 deg RMS accuracy   

(Roll/Pitch) 1 deg RMS accuracy   
(Heading) 0.75 deg RMS accuracy   

Tracker components    
    

Dimensions 3 AXES 3 AXES 3 AXES 
Full scale ± 2000 deg/s ± 160 m/s2 ± 1.9 Gauss 

 

Fig. 2. Pedestrian Navigation system (PNS) aided with dynamic constraint and magnetic field data. 
3.4 Heading Estimation  
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and z axis directions in the b frame. b
nC  is the direction 

cosine matrix based on (8), and the pitch and roll can be 
calculated as  

  1tan
b
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b
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              (9)                   
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With measured attitude angles, the relationship 

between the geomagnetic field vector measured by the 
magnetometer in the b frame, bH , and the geomagnetic 
field vector in the frame nH  could be expressed as: 

 
 nH = b b

nC H                               (10) 
 

where bH  and nH  are defined as 
 

bH =          b b b
x y zH H H⎡ ⎤⎣ ⎦ ,     nH =         b b b

x y zH H H⎡ ⎤⎣ ⎦   
 
After compensating for the magnetic readings by using 

the tilt angle, declination, and distortions, then the 
magnetic heading can be computed by using an arctangent 
function as follows:              

 
 magψ arc tan= − ( / )n n

y yH H                     (11) 

3.5 Attitude Propagation based on 
Gyroscope Measurements 

 
After the heading estimation for attitude initialization 

from the three-axis magnetic compass, and given the 
gyroscope measurement, the attitude is update by 
quaternion attitude estimation as a strap down inertial 
navigation system. Quaternion-based attitude update was 
chosen because of computational efficiency and having no 

singularity problem when the pitch angle is equal to 
/ 2.π±   

Given the ggyroscope measurement angular rate is 
[ ] , Tb

ib p q rω =  where p, q, and r are the three angular 
rates in the body frame, the process model of the 
quaternion is a discrete integration of the input angular 
rate: 

 

  

(12)

 
  

The rotation matrix from the body frame to the tangent 
frame can be calculated as  
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And the quaternion can be calculated from 
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4. Extended Kalman Filter 

We presented the ZUPT, ZHC, and magnetic heading 
in the section above. In this section, we will address the 
details of the estimation filter, i.e. the extended Kalman 
filter, used to implement the navigation algorithm with an 
IMU and a magnetometer. The EKF has two distinct steps: 
predict and update. In the predict step, the state vector is 
propagated from the current epoch into the next epoch by 
using a system dynamic model. The zero velocity 
measurements during the stance phase, the zero height 
constraint when the person walks on the same zero height 
floor, and the magnetic heading estimation are used to 
update the error state vector estimated after the predicted 
state vector. 

 

Fig. 3. Compass frame (red) orientation with respect to
Earth’s surface. Local flat frame (blue) is parallel to
Earth’s surface, and ,φ θ  represent the roll and pitch
angles, respectively. 
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4.1 Process Model 
The process model employed by the EKF governs the 

dynamic relationship between the states of two successive 
time steps. First, the state vector is defined on the 
navigation frame using position, velocity, and attitude. The 
state vector at time step k, denoted by ,kx  consists of 
position ,kp  velocity ,kv  and motion acceleration .kψ  It 
is expressed as follows: 

 
                        n n n n

k k k k kx p v qψ⎡ ⎤= ⎣ ⎦           (19)                    
 
The system model for the EKF should be linear 

because of the EKF constraints. Eq. (1) can be linearized 
and expressed with respect to the error of the state vector 
in (11). The final system model with the error state vector 
( x)δ  can be written as follows: 

 
 1 1k k k kx F x ω+ −= +               (20) 

  

  (21)

 
 

where I  is the identity matrix, 0 is a zero matrix, [ nf ] is 
the skew-symmetric matrix of nf , the subscript � denotes 
the time stamp, and the subscript a x b  shows the number 
of matrix rows ( a ) and columns ( b ). The process noise 
( kω ) is assumed to be white noise. Eq. (10) propagates the 
state vector into the next time step ( k +1), and 4 4 xq  denotes 
quaternion propagation. 

4.2 Observation Model 
In addition to the five observation equations for the 

magnetic heading, zero height constraint and zero velocity 
in the stance phase, the acceleration reading of the 
accelerometer is used as a measurement to predict the roll 
and pitch angle during rotation of the pedestrian in 
different directions, i.e. turning or taking stairs up or down. 
The relationship between the accelerometer reading and 
attitude is written as follows: 
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The error state vector is updated by the Kalman filter, 

when a measurement comes from an external sensor. 

Possible measurements are attitude, position, or velocity. 
In our approach, we use zero velocity, altitude 
measurements (z component of the position), and roll and 
pitch based on angles measured by the accelerometer 
( acc, roll ).accpitch  

The observation model can be expressed as follows: 
 
 Z=                    ,

Tb b b b b
z x y z k acc acc magp v v v q pitch roll ψ⎡ ⎤⎣ ⎦  (18)   

  k k k kZ H x vδ= +             (19) 
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where the measurement noise ( )kv  is assumed to be white 
noise. This model is only reliable at low accelerations. 
Therefore, we need an additional observation model for 
high accelerations. The roll and pitch measurements are no 
longer reliable at high accelerations. Thus, the observation 
model should be changed as follows: 

 

Z=                    ,
Tb b b b b

z x y z k magp v v v q ψ⎡ ⎤⎣ ⎦      (25) 
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     (26) 

 
Thus, the ZUPT implemented in the Kalman filter, not 

only corrects the velocity, but also the position and the 
attitude errors. 

4.3 Filter Structure 
We obtained the system model and observation model 

to implement the EKF. Fig. 2 shows a block diagram of the 
proposed method for estimating the navigation solution 
using a magnetometer and an IMU. Basically, the 
navigation solution is computed using the INS block, and 
the output is not compensated for until the EKF result is 
feed back. 

5. Performance Evaluation  

The following sub-sections describe preliminary 
experimental results demonstrating the accuracy of 
position estimation using the PDR system. 

5.1 Hardware Description  
We evaluated our pedestrian tracking method in the 

institute building by using an IMU equipped with a 
magnetometer and IMU, which are attached to the shoe of 
the right foot (see Fig. 4) 

We used an Xsens MTw sensor. An MTw is a highly 
accurate wireless motion tracker that measures 
acceleration, rotation, and Earth’s magnetic field, all in 
three directions. Measurements of the MTw were 
transmitted to a wireless receiver connected to a computer. 
In our trials, we used a laptop computer to record and store 
all measurement data. The transmission rate of the sensor 
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was set to 100 Hz. 
We performed several types of recording trial where 

users walked known patterns. The trials included walking 
in a straight line, walking a large rectangle, and walking 
for 10 minutes throughout the building (starting and 
ending at exactly the same location). During the trials, 
measurements were recorded on the laptop so they could 
be played back and analyzed afterwards. Based on the 
recorded trials, all algorithms were run to provide an 
estimation of position. These estimated positions were 
plotted on a visual two-dimensional map, so they could be 
visually inspected and compared. 

5.2 Test Setting 
An experimental test with a pedestrian was conducted 

to verify the proposed method. Data were recorded while 
the user was at a standstill for 10 seconds for gyro bias 
compensation, and then the subject moved to the desired 
scenario. The sensor specifications are shown in Table 1.  

5.3 Test Result  
The estimated position results are presented in Figs. 6-

9. Without ZHCs, as shown in Fig. 9, vertical position 

results drift at each stance phase when the foot touches the 
ground for a short time. Fig. 8 shows the results of walk-
tracking whereby the estimated trajectory in the horizontal 
plane is closer to rectangular. The estimated travelled 
distance was 30 m, which differs slightly from the true 
distance. However, as depicted in Fig. 9, the error of the 
estimated z component grows slowly with time. 

Using ZHC, the estimated z component drift is reduced 
(as shown in Fig. 6), and the total distance traveled is also 
straight in the direction the user moved. When the 
magnetometer is integrated with a traditional zero velocity 
update, i.e. resetting the velocity to zero when the foot is 
on the ground, the drift rate was slightly smaller, compared 
with zero velocity update only 

 

Fig. 4. IMU attached to the right foot. 
 

 

Fig. 5. MTw sensor. 
 

 

Fig. 6. Estimated altitude (ZUPT+ZHC). 

 

 

Fig. 7. Estimated 2D trajectory (ZUPT+ZHC). 
 

 

Fig. 8. Estimated trajectory on a horizontal plane 
(ZUPT+ZHC+ magy ). 

 

 

Fig. 9. Estimated altitude of a walk along a corridor 
(ZUPT). 
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6. Conclusion 

In this paper, we have proposed a new scheme for 
attitude estimation using an accelerometer and an electric 
compass for magnetic heading estimation to improve 
inertial navigation for a foot-mounted inertial sensor. From 
the test results, we observed that if the system is not 
stationary, dynamic acceleration will influence the gravity 
field measurement in the b frame. So the attitude results 
willbe not accurate, and eventually, these errors will be 
propagated in the magnetic heading result. If high dynamic 
acceleration occurs, orientation results will be significantly 
biased. Algorithm performance was examined in a real-
world experiment, and the experimental results indicate 
less vertical position error of the total distance traveled. 
The proposed method could improve estimation 
performances for position, velocity, and attitude without 
additional hardware, except for an inertial sensor and a 
magnetometer. Additionally, the method increased 
accuracy, compared with a conventional INS, and provided 
accurate information for a longer time. 
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