• Title/Summary/Keyword: Attitude Control System

Search Result 708, Processing Time 0.029 seconds

The Influence of Sales-force System on Salesperson's Job Attitude and Sales Performance (영업통제시스템이 판매사원의 직무태도와 판매성과에 미치는 영향)

  • YI, Ho-Taek;YU, Jung-Rim
    • Journal of Distribution Science
    • /
    • v.17 no.11
    • /
    • pp.81-92
    • /
    • 2019
  • Purpose: The salesperson, the core of the operating activities, plays the role of connecting the inside and outside of the company, representing the company to the consumer and identifying and responding to the customer's needs. The department store industry is the most representative retail industry in South Korea, and competition among its peer group and industry is intensifying, requiring differentiated service sales activities and performance from its employees. This study divided the sales force system into activity control(process-oriented control) and output control(performance-oriented control) and verified the differential impact on the job attitude of the salesperson (e.g., job satisfaction and burn-out), respectively. In addition, the effect of job satisfaction and burn-out of the salesperson on the job performance were checked. Research design, data, and methodology: The survey was conducted on 200 sales people working at five branch stores of Hyundai department store in Seoul, and 194 of them were analyzed. The reliability and validity of the variables were analyzed and hypotheses were verified through the SEM. Results: Results have shown that activity control has a greater impact on burn-out compared to output control, and output control has a greater impact on job satisfaction compared to activity control. It has been shown that the salesperson's burn-out does not affect sales performance, but that job satisfaction has a positive effect on sales performance. Conclusions: This study examines the effect of sales force management system such as activity control and output control, on the job attitude and sales performance in department stores. According to the results of this research, each of two control systems have a discriminatory effect on the job attitude variables. For the sales managers of department store, it is recommended to increase the efficiency of sales management by increasing the use of outcome control compared to activity control.

The design of attitude reference system for underwater vehicle using extended kalman filter (확장칼만필터를 이용한 수중 운동체의 자세계산 시스템 설계)

  • 홍현수;박찬국;이장규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1352-1355
    • /
    • 1997
  • This paper presents the algorithm for estimating the attitude of an underwater vehicle using EFK. The system model is designed by linerizing the nonlinear Euler angle differential equation and the measurements is a speed logger output. The simulation result shows that the estimation lagorithm is adequate for decreasing attitude errors that grow abruptly during the motion with acceleration and rotation. It also shows that we can adapt the algorithm for compensating initial attitude errors generated after initial leveling.

  • PDF

Precision Attitude Determination Design Using Tracker

  • Rhee, Seung-Wu;Kim, Zeen-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.53-57
    • /
    • 1998
  • Star tracker placement configuration is proposed and the properness of the placement configuration is verified for star tracker's sun avoidance angle requirement. Precision attitude determination system is successfully designed using a gyro-star tracker inertial reference system for a candidate LEO spacecraft. Elaborate kalman filter formulation for a spacecraft is proposed for covariance analysis. The covariance analysis is performed to verify the capability of the proposed attitude determination system. The analysis results show that the attitude determination error and drift rate error are good enough to satisfy the mission of a candidate spacecraft.

  • PDF

Derivation of Attitude Error Differential Equations by Platform Torque Commands (플랫폼 토크 명령에 의한 자세오차 미분방정식 유도)

  • 김갑진;송기원
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.7
    • /
    • pp.556-562
    • /
    • 2003
  • This paper presents new attitude error differential equations to define attitude errors as the rotation vector for inertial navigation systems. Attitude errors are defined with the rotation vector between the reference coordinate frame and the platform coordinate frame, and Platform dynamics to the reference coordinate frame due to platform torque command errors are defined. Using these concepts for attitude error definition and platform dynamics, we have derived attitude error differential equations expressed in original nonlinear form for GINS and SDINS and showed that these are equivalent to attitude error differential equations expressed in known linear form. The relation between attitude errors defined by the rotation vector and attitude errors defined by quaternion is clearly presented as well.

Attitude control of space robots with a manipulator using time-state control form

  • Sampei, Mitsuji;Kiyota, Hiromitsu;Ishikawa, Masato
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.468-471
    • /
    • 1995
  • In this paper, we propose a new strategy for a space robot to control its attitude. A space robot is an example of a class of non-holonomic systems, a system of which cannot be stabilized into its equilibria with continuous static state feedbacks even in the case that the system is, in some sense, controllable. Thus, we cannot design stabilizing controllers for space robots using conventional control theories. The strategy presented here transforms the non-holonomic system into a time-state control form, and allows us to make the state of the original system any desired one. In the stabilization, any conventional control theory can be applied. For simplicity, a space robot with a two-link manipulator is considered, and a simulated motion of the controlled system is shown.

  • PDF

3-DOF Attitude Control of a Model Helicopter based on Explicit Decoupling and Adaptive Control Scheme

  • Park, M.S.;S.K. Hong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.85.6-85
    • /
    • 2001
  • This paper describes a 3-DOF attitude control of a small model helicopter in hover through explicit decoupling and adaptive control scheme. A model helicopter mounted on gimbal-stand is considered as a system that has 3 independent SISO systems representing motions about roll, pitch and yaw axis and these subsystems are identified from the test flight data. In this consideration, the contribution of others to yaw channel is neglected since it is relatively small. Two PID controllers based on Ziegler-Nichols method are designed for roll pitch channels independently. Also, adaptive fuzzy tuner is designed and applied to those PID controllers to cope with coupling effects between each channel and system uncertainties due to variation of engine RPM. The experimental results show that the attitude control ...

  • PDF

Integrated System for Autonomous Proximity Operations and Docking

  • Lee, Dae-Ro;Pernicka, Henry
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.1
    • /
    • pp.43-56
    • /
    • 2011
  • An integrated system composed of guidance, navigation and control (GNC) system for autonomous proximity operations and the docking of two spacecraft was developed. The position maneuvers were determined through the integration of the state-dependent Riccati equation formulated from nonlinear relative motion dynamics and relative navigation using rendezvous laser vision (Lidar) and a vision sensor system. In the vision sensor system, a switch between sensors was made along the approach phase in order to provide continuously effective navigation. As an extension of the rendezvous laser vision system, an automated terminal guidance scheme based on the Clohessy-Wiltshire state transition matrix was used to formulate a "V-bar hopping approach" reference trajectory. A proximity operations strategy was then adapted from the approach strategy used with the automated transfer vehicle. The attitude maneuvers, determined from a linear quadratic Gaussian-type control including quaternion based attitude estimation using star trackers or a vision sensor system, provided precise attitude control and robustness under uncertainties in the moments of inertia and external disturbances. These functions were then integrated into an autonomous GNC system that can perform proximity operations and meet all conditions for successful docking. A six-degree of freedom simulation was used to demonstrate the effectiveness of the integrated system.

Attitude Control of Artificial Satellites via Intelligent Digital Redesign

  • Lee, Ho-Jae;Park, Jin-Bae;Lee, Yeun-Woo;Joo, Young-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1283-1288
    • /
    • 2003
  • This paper proposes an approach to attitude control artificial satellites with jet-engine. The jet-engine produces on-off thrust, which can be modelled as pulse-width-modulated (PWM) function. Therefore, the problem is converted to design a PWM controller and we develop an efficient technique for this purpose using digital redesign. The digital redesign is a converting technique a well-designed analog controller into the equivalent digital one maintaining the property of the original analog control system in the sense of state-matching. The redesigned digital controller is again converted into PWM controller using the equivalent area principle. We show a computer simulation of the attitude control of artificial satellites.

  • PDF

Analysis of Plume Impingement Effect of Lunar Lander (지상시험 모델용 달착륙선 플룸 해석을 통한 추력기간의 간섭 효과 분석)

  • Choi, Ji-Yong;Lee, Jae-Won;Kim, Su-Kyum;Han, Cho-Young;Yu, Myoung-Jong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.254-257
    • /
    • 2011
  • Two types of thrusters(Descent Control Thruster (DCT) for reducing landing speed and Attitude Control Thruster (ACT) for attitude control) are mounted on the propulsion system of Ground test model lunar lander. In this paper, plume impingement effect and ground effect between DCT Modules are analyzed using numerical method when the impact occurred close to the ground.

  • PDF

Sliding Mode Trim and Attitude Control of a 2-00F Rigid-Rotor Helicopter Model

  • Jeong, Heon-Sul;Chang, Se-Myong;Park, Jin-Sung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.6 no.2
    • /
    • pp.23-32
    • /
    • 2005
  • An experimental control system is proposed for the attitude control of a simplified 2-DOF helicopter model. The main rotor is a rigid one, and the fuselage is simply supported by a fixed hinge point where the longitudinal motion is decoupled from the lateral one since the translations and the rolling rotation are completely removed. The yaw trim of the helicopter is performed with a tail rotor, by which the azimuthal attitude can be adjusted on the rotatable post in the yaw direction. The robust sliding mode control tracking a given attitude angle is proposed based on the flight dynamics. A pitch damper is inserted for the control of pitching angle while the compensator to reaction torque is used for the control of azimuth angle. Several parameters of the system are selected through experiments. The results shows that the proposed control method effectively counteracts nonlinear perturbations such as main rotor disturbance, undesirable chattering, and high frequency dynamics.