• Title/Summary/Keyword: Attitude Angle

Search Result 282, Processing Time 0.025 seconds

Ground Experiment of Spacecraft Attitude Control Using Hardware Testbed

  • Oh, Choong-Suk;Bang, Hyo-Choong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.4 no.1
    • /
    • pp.75-87
    • /
    • 2003
  • The primary objective of this study is to demonstrate ground-based experiment for the attitude control of spacecraft. A two-axis rotational simulator with a flexible ann is constructed with on-off air thrusters as actuators. The simulator is also equipped with payload pointing capability by simultaneous thruster and DC servo motor actuation. The azimuth angle is controlled by on-off thruster command while the payload elevation angle is controlled by a servo-motor. A thruster modulation technique PWM(Pulse Width Modulation) employing a time-optimal switching function plus integral error control is proposed. An optical camera is used for the purpose of pointing as well as on-board rate sensor calibration. Attitude control performance based upon the new closed-loop control law is demonstrated by ground experiment. The modified switching function turns out to be effective with improved pointing performance under external disturbance. The rate sensor calibration technique by Kalman Filter algorithm led to reduction of attitude error caused by the bias in the rate sensor output.

A study on the 3-axis attitude stabilization of Koreasat (무궁화 방송통신 위성의 3축 자세 안정화 장치에 관한 연구)

  • 진익민;백명진;김진철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.793-798
    • /
    • 1993
  • In this study the attitude control of the KOREASAT is investigated. The KOREASAT is a geostationary satellite and its 3 attitude angles, namely, roll, pitch and yaw angles, are stabilized by using the 3-axis stabilization technique. In the pitch control loop, the pitch attitude angle received from the earth sensor is processed in the attitude processing electronics by using PI type control logic, and the control command is sent to the momentum wheel assembly to generate the control torque by varying the wheel rate. The roll/yaw attitude control is performed by activating a magnetic torquer or by firing appropriate thrusters. The magnetic torquer interacts with the earth magnetic field to produce the control torque, and the thrusters are used to control the larger roll attitude errors. In this study dynamic modelling of the satellite is performed. And the earth sensor, the momentum wheel, and the magnetic torquer are mathematically modelled. The 3-axis attitude control logic is implemented to make the closed-loop system and simulations are carried out to verify the implemented control laws.

  • PDF

Rotating Flows in Eccentric Cylinders (편심환내의 회전 유동)

  • Sim, Woo-Gun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.3
    • /
    • pp.9-16
    • /
    • 1997
  • A numerical method based on the spectral collocation method is developed for the steady rotating flows in eccentric annulus. Steady flows between rotating cylinders are of interest on lubrication in large rotating machinery. Steady rotating flow is generated by the rotating inner cylinder with constant angular velocity. The governing equations for laminar flow are simplified from Navier-Stokes equations by neglecting the non-linear convection terms. Integrating the pressure round the rotating cylinder based on the half Sommerfeld method, the load on the cylinder is evaluated with eccentricity. The attitude angle and Sommerfeld variable are calculated from the load. It is found that those values are influenced by the eccentricity. The attitude and Sommerfeld reciprocal are decreased with eccentricity. As expected, the effect of the annular gap ratio on them is negligible.

  • PDF

Analysis of Protection Capability of a Conical Shaped Protector (유한요소해석을 이용한 원뿔형 대응체 방호 효과 분석)

  • Kim, Heecheol;Kim, Jongbong;Jeong, JinHwan;Yoo, Yo-Han
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.563-571
    • /
    • 2018
  • In order to effectively protect a penetrator, the conically shaped protector was proposed and the protection capability was investigated. The collision and penetration of the penetrator with the protector were analyzed using dynamic finite element analysis. The post impact behaviors of the penetrator, i.e., flying velocity and the change of attitude angle, were monitored to investigate the protection capability. The flying velocity and the attitude angle are used to investigate the deviation and the penetration power respectively. The effect of rotation speed of the protector and the collision position on the protection capability is investigated in the viewpoint of deviation and attitude angle when penetrator colliding with our tank.

Dynamic Position of Vehicles using AHRS IMU Sense (AHRS IMU 센서를 이용한 이동체의 동적 위치 결정)

  • Back Ki-Suk;Lee Jong-Chool;Hong Soon-Hyun;Cha Sung-Yeoul
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.77-81
    • /
    • 2006
  • GPS cannot determine random errors such as multipath and signal cutoff caused by surrounding environment that determines the visibility of satellites and the speed of data creation and transmission is lower than the speed of vehicles, it is difficult to determine accurate dynamic positions. Thus this study purposed to implement a method of deciding the accurate dynamic position of vehicles by combining AHRS (Attitude Heading Reference System) IMU (Initial Measurement Unit) based on low-priced MEMS (Micro Electro Mechanical System) in order to provide the information of attitude, position and speed at a high transmission rate without external help. This study conducted an initialization test to decide dynamic position using AHRS IMU sensor, and derived attitude correction angles of vehicles against time through regression analysis. The roll angle was $y=(A{\times}10^{-6})x^2 -(B{\times}10^{-5})x+Cr{\times}10^{-2}$ and the pitch angle was $y=(A{\times}10^{-6})x^2-(B{\times}10^{-7})x+C{\times}10^{-2}$, each of which was derived from second-degree polynomial regression analysis. It was also found that the heading angle was stabilized with variation less than $1^{\circ}$ after 60 seconds.

  • PDF

Development of CMG Ground Simulator using Torque Sensor (토크센서를 이용한 CMG의 지상 시뮬레이터 개발)

  • Kim, Seung-Hyeon;Lee, Seung-Mok;Rhee, Seung-Wu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.1
    • /
    • pp.89-98
    • /
    • 2009
  • CMG cluster which consists of four CMGs can be used to produce 3-axis torque. There are many issues that we have to investigate and validate when CMG cluster itself is developed. Thus, its ground validation and verification processes are essential. Therefore, CMG simulator which uses a torque sensor to calculate satellite attitude is proposed in this paper. Update and kalman filter are also proposed for gimbal angle problem occurred in development. The first way uses a calculated gimbal angle as a primary and a sensor angle as a scondary to reduce error. Also, the test results of specific CMG steering law as well as attitude control logic are presented as an example.

A Study on Attitude angle control of Quadruped Walking Robot (4족 보행로봇의 자세각 제어에 관한 연구)

  • Eom Han-Sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.8
    • /
    • pp.1722-1729
    • /
    • 2005
  • In this paper, we used the quadruped walking robot Titan-VIII in order to carry out this simulation of sway compensation trajectory. The attitude angle ${\phi}_r$ and ${\phi}_p$ is obtained from 3-D motion sensor that is attached at the center of robot body and the attitude control carried out at every 10[ms] for stable gait of robot. Duty factor, that is fixed at 0.5. When we change period T into 1.5, 2.0, 3.0[sec] each and moving distance per period is changed into 0.2, 0.3(m), we sim띠ate several walking experiment of robot. and then we analyze the experiment results if there are any difference between the imaginary ZMP and actual ZMP of robot and the stable gait of robot is realized.

Attitude Estimation of Agricultural Unmanned Helicopters using Inertial Measurement Sensors (관성센서를 이용한 농용 무인 헬리콥터의 자세 추정)

  • Bae, Yeonghwan;Oh, Minseok;Koo, Young Mo
    • Current Research on Agriculture and Life Sciences
    • /
    • v.32 no.3
    • /
    • pp.159-163
    • /
    • 2014
  • Agricultural unmanned helicopters have become a new paradigm for aerial application. Yet, such agricultural helicopters require easy and affordable attitude control systems. Therefore, this study presents an affordable attitude measurement system using a DCM (direction cosine matrix) algorithm that would be applied to agricultural unmanned helicopters. An IMU using a low-cost MEMS and an algorithm to estimate the attitude of the helicopter were applied in a gimbals structure to evaluate the accuracy of the attitude measurements. The estimation errors in the attitude were determined in comparison with the true angles determined by absolute position encoders. The DCM algorithm and sensors showed an accuracy of about 1.1% for the roll and pitch angle estimation. However, the accuracy of the yaw angle estimation at 3.7% was relatively larger. Such errors may be due to the magnetic field of the stepping motor and encoder system. Notwithstanding, since the intrinsic behavior of the agricultural helicopter remains steady, the determination of attitude would be reliable and practical.

On the Use of Finite Rotation Angles for Spacecraft Attitude Control

  • Kim, Chang Joo;Hur, Sung Wook;Ko, Joon Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.300-314
    • /
    • 2017
  • This paper examines finite rotation angle (FRA) applications for spacecraft attitude control. The coordinate transformation matrix and the attitude kinematics represented by FRAs are introduced. The interpolation techniques for the angular orientations are thoroughly investigated using the FRAs and the results are compared to those using traditional methods. The paper proposes trajectory description techniques by using extremely smooth polynomial functions of time, which can describe point-to-point attitude maneuvers in a realizable and accurate manner with the help of unique FRA features. In addition, new controller design techniques using the FRAs are developed by combining the proposed interpolation techniques with a model predictive control framework. The proposed techniques are validated through their attitude control applications for an aggressive point-to-point maneuver. Conclusively, the FRAs provide much more flexibility than quaternions and Euler angles when describing kinematics, generating trajectories, and designing attitude controllers for spacecraft.

Nonlinear Attitude Control for a Rigid Spacecraft by Feedback Linearization

  • Hyochoong Bang;Lee, Jung-Shin;Eun, Youn-Ju
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.203-210
    • /
    • 2004
  • Attitude control law design for spacecraft large angle maneuvers is investigated in this paper. The feedback linearization technique is applied to the design of a nonlinear tracking control law. The output function to be tracked is the quaternion attitude parameter. The designed control law turns out to be a combination of attitude and attitude rate tracking commands. The attitude-only output function, therefore, leads to a stable closed-loop system following the given reference trajectory. The principal advantage of the proposed method is that it is relatively easy to produce reference trajectories and associated controller.