• Title/Summary/Keyword: Atomic layer deposition p-type ZnO

Search Result 7, Processing Time 0.026 seconds

Nitrogen Doping Characterization of ZnO Prepared by Atomic Layer Deposition (원자층 증착법으로 성장된 ZnO 박막의 질소 도핑에 대한 연구)

  • Kim, Doyoung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.10
    • /
    • pp.642-647
    • /
    • 2014
  • For feasible study of opto-electrical application regarding to oxide semiconductor, we implemented the N doped ZnO growth using a atomic layer deposition technique. The p-type ZnO deposition, necessary for ZnO-based optoelectronics, has considered to be very difficulty due to sufficiently deep acceptor location and self-compensating process on doping. Various sources of N such as $N_2$, $NH_3$, NO, and $NO_2$ and deposition techniques have been used to fabricate p-type ZnO. Hall measurement showed that p-type ZnO was prepared in condition with low deposition temperature and dopant concentration. From the evaluation of photoluminescence spectroscopy, we could observe defect formation formed by N dopant. In this paper, we exhibited the electrical and optical properties of N-doped ZnO thin films grown by atomic layer deposition with $NH_3OH$ doping source.

Study of the Nitrogen-Beam Irradiation Effects on ALD-ZnO Films (ALD로 성장된 ZnO박막에 대한 질소이온 조사효과)

  • Kim, H.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.5
    • /
    • pp.384-389
    • /
    • 2009
  • ZnO, a wurtzite lattice structure, has attracted much attention as a promising material for light-emitting diodes (LEDs) due to highly efficient UV emission resulting from its large band gap of 3.37 eV, large exciton binding energy of 60 meV, and low power threshold for optical pumping at room temperature. For the realization of LEDs, both n-type ZnO and p-type ZnO are required. Now, n-type ZnO for practical applications is available; however, p-type ZnO still has many drawbacks. In this study, ZnO films were grown on glass substrates by using atomic layer deposition (ALD) and the ZnO films were irradiated by nitrogen ion beams (20 keV, $10^{13}{\sim}10^{15}ions/cm^2$). The effects of nitrogen-beam irradiation on the ZnO structure as well as the electrical property were investigated by using fieldemission scanning electron microscopy (FESEM) and Hall-effect measurement.

Structural, Optical and Electrical Properties of N-doped ZnO Nanofilms by Plasma Enhanced Atomic Layer Deposition (플라즈마 원자층 증착 방법을 이용한 N-doped ZnO 나노박막의 구조적.광학적.전기적 특성)

  • Kim, Jin-Hwan;Yang, Wan-Youn;Hahn, Yoon-Bong
    • Korean Chemical Engineering Research
    • /
    • v.49 no.3
    • /
    • pp.357-360
    • /
    • 2011
  • N-doped ZnO nanofilms were prepared by plasma enhanced atomic layer deposition method. $Zn(C_{2}H_{5})_{2}$, $O_{2}$ and $N_{2}$ were used as Zn, O and N sources, respectively, for N-doped ZnO films under variation of radio frequency (rf) power from 50-300W. Structural, optical and electrical properties of as-grown ZnO films were investigated with Xray diffraction(XRD), photoluminescence(PL) and Hall-effect measurements, respectively. Nitrogen content and p-type conductivity in ZnO nanofilms increased with the rf power.

Fabrication of Organic-Inorganic Nanohybrid Semiconductors for Flexible Electronic Device

  • Han, Gyu-Seok;Jeong, Hui-Chan;Gwon, Deok-Hyeon;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.114-114
    • /
    • 2011
  • We report a high-performance and air-stable flexible and invisible semiconductor which can be substitute for the n-type organic semiconductors. N-type organic-inorganic nanohybrid superlattices were developed for active semiconducting channel layers of thin film transistors at low temperature of $150^{\circ}C$ by using molecular layer deposition with atomic layer deposition. In these nanohybrid superlattices, self-assembled organic layers (SAOLs) offer structural flexibility, whereas ZnO inorganic layers provide the potential for semiconducting properties, and thermal and mechanical stability. The prepared SAOLs-ZnO nanohybrid thin films exhibited good flexibility, transparent in the visible range, and excellent field effect mobility (> 7cm2/$V{\cdot}s$) under low voltage operation (from -1 to 3V). The nanohybrid semiconductor is also compatible with pentacene in p-n junction diodes.

  • PDF

Self-Limiting Growth of ZnO Thin Films and Substrate-Temperature Effects on Film Properties (자기제한적 표면반응에 의한 ZnO 박막성장 및 기판온도에 따른 박막특성)

  • Lee, D.H.;Kwon, S.R.;Lee, S.K.;Noh, S.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.4
    • /
    • pp.296-301
    • /
    • 2009
  • An inductively coupled plasma assisted atomic layer deposition(ICP-ALD) system has been constructed for the deposition of ZnO thin films, and various experiments of ZnO thin films on p-type Si(100) substrates have been carried out to find the self-limiting reaction conditions for the ICP-ALD system under non-plasma circumstances. Diethyl zinc[$Zn(C_2H_5)_2$, DEZn] was used as the zinc precursor, $H_2O$ as the oxidant, and Ar as the carrier and purge gas. At the substrate temperature of $150^{\circ}C$, atomic layer deposition conditions based on self-limiting surface reaction were successfully obtained by series of experiments through the variation of exposure times for DEZn, $H_2O$, and Ar. ZnO deposition was repeated at different substrate temperatures of $90{\sim}210^{\circ}C$. As a result, the thermal process window(ALD window) for ZnO thin films was observed to be $110{\sim}190^{\circ}C$ and the average growth rate was measured to be constant of 0.29 nm/cycle. Properties of the film's microstructure and composition(Zn, O, etc.) were also studied. As the substrate temperature increases, the crystallinity was improved and ZnO(002) peak became dominant. The films deposited at all temperatures were high purity, and the films deposited at high temperatures had the composition ratio between Zn and O closer to one of a stable hexagonal wurtzite structure.

Effective Oxygen-Defect Passivation in ZnO Thin Films Prepared by Atomic Layer Deposition Using Hydrogen Peroxide

  • Wang, Yue;Kang, Kyung-Mun;Kim, Minjae;Park, Hyung-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.3
    • /
    • pp.302-307
    • /
    • 2019
  • The intrinsic oxygen-vacancy defects in ZnO have prevented the preparation of p-type ZnO with high carrier concentration. Therefore, in this work, the effect of the concentration of H2O2 (used as an oxygen source) on the oxygen-vacancy concentration in ZnO prepared by atomic layer deposition was investigated. The results indicated that the oxygen-vacancy concentration in the ZnO film decreased by the oxygen-rich growth conditions when using H2O2 as the oxygen precursor instead of a conventional oxygen source such as H2O. The suppression of oxygen vacancies decreased the carrier concentration and increased the resistivity. Moreover, the growth orientation changed to the (002) plane, from the combined (100) and (002) planes, with the increase in H2O2 concentration. The passivation of oxygen-vacancy defects in ZnO can contribute to the preparation of p-type ZnO.

Analysis of Photoluminescence for N-doped and undoped p-type ZnO Thin Films Fabricated by RF Magnetron Sputtering Method

  • Liu, Yan-Yan;Jin, Hu-Jie;Park, Choon-Bae;Hoang, Geun C.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.1
    • /
    • pp.24-27
    • /
    • 2009
  • N-doped ZnO thin films were deposited on n-type Si(100) and homo-buffer layer, and undoped ZnO thin film was also deposited on homo-buffer layer by RF magnetron sputtering method. After deposition, all films were in-situ annealed at $800^{\circ}C$ for 5 minutes in ambient of $O_2$ with pressure of 10Torr. X -ray diffraction shows that the homo-buffer layer is beneficial to the crystalline of N-doped ZnO thin films and all films have preferable c-axis orientation. Atomic force microscopy shows that undoped ZnO thin film grown on homo-buffer layer has an evident improvement of smoothness compared with N-dope ZnO thin films. Hall-effect measurements show that all ZnO films annealed at $800^{\circ}C$ possess p-type conductivities. The undoped ZnO film has the highest carrier concentration of $1.145{\times}10^{17}cm{-3}$. The photoluminescence spectra show the emissions related to FE, DAP and many defects such as $V_{Zn}$, $Zn_O$, $O_i$ and $O_{Zn}$. The p-type defects ($O_i$, $V_{Zn}$, and $O_{Zn}$) are dominant. The undoped ZnO thin film has a better p-type conductivity compared with N-doped ZnO thin film.