• Title/Summary/Keyword: Atomic Oxygen

Search Result 559, Processing Time 0.033 seconds

Influence of Electron Beam Irradiation on the Electrical Properties of Zn-Sn-O Thin Film Transistor (Zn-Sn-O 박막 트랜지스터의 전기적 특성에 대한 전자빔 조사의 영향)

  • Cho1, In-Hwan;Jo, Kyoung-Il;Choi, Jun Hyuk;Park, Hai-Woong;Kim, Chan-Joong;Jun, Byung-Hyuk
    • Korean Journal of Materials Research
    • /
    • v.27 no.4
    • /
    • pp.216-220
    • /
    • 2017
  • The effect of electron beam (EB) irradiation on the electrical properties of Zn-Sn-O (ZTO) thin films fabricated using a sol-gel process was investigated. As the EB dose increased, the saturation mobility of ZTO thin film transistors (TFTs) was found to slightly decrease, and the subthreshold swing and on/off ratio degenerated. X-ray photoelectron spectroscopy analysis of the O 1s core level showed that the relative area of oxygen vacancies ($V_O$) increased from 10.35 to 12.56 % as the EB dose increased from 0 to $7.5{\times}10^{16}electrons/cm^2$. Also, spectroscopic ellipsometry analysis showed that the optical band gap varied from 3.53 to 3.96 eV with increasing EB dose. From the results of the electrical property and XPS analyses of the ZTO TFTs, it was found that the electrical characteristic of the ZTO thin films changed from semiconductor to conductor with increasing EB dose. It is thought that the electrical property change is due to the formation of defect sites like oxygen vacancies.

Adsorption of molecular oxygen and $SO_2$ on Ni(100)

  • Hyunsukl Jeong;Changmin;Kim, Eunha;Hojun Jeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.180-180
    • /
    • 1999
  • The interaction of oxygen with a Ni(100) surface has been investigated using X-ray Photoelectron Spectroscopy (XPS) and Near-Edge X-ray Absorption Fine Structure (NEXAFS) technique. Below 200L oxygen exposure, molecular oxygen was dissociated to atomic oxygen. Increasing oxygen exposure, -1s binding energy shifted from 531.0 eV to 533.0 eV due to molecular adsorption. The presence of molecular oxygen species was confirmed by NEXAFS. Molecular oxygen adsorbed on Ni(100) was oriented perpendicular to the surface. Upon heating over 150K molecular adsorbed oxygen surface was also analyzed using NEEXFS.

  • PDF

Hot Atom Chemistry of Aromatic Halides : Scavenger, Temperature and Oxygen Effect (芳香族할라이드의 Hot Atom Chemistry 스캐벤져, 溫度 및 酸素의 效果)

  • Choi, Jae-Ho;Park, Yong-Chan;Son, Mi-Ja
    • Journal of the Korean Chemical Society
    • /
    • v.9 no.2
    • /
    • pp.78-80
    • /
    • 1965
  • The organic yields(i.e., fraction of nuclear events resulting in organic compound formation) of the radioactive neutron capture reactions of the halogens in purified aromatic halides have been determined in the liquid and solid state, in the presence of scavenger, elemental halogen for thermal atoms, and in the presence of oxygen. Among the important results are; (1) organic yields of the halides are due in part to hot processes and in part to thermal processes; (2) temperature (from liquid state to solid state); (3) the organic yield of chlorobenzene is the same in the solid phase as in the liquid phase whereas the yields of the bromo-and iodobenzene are higher in the solid.

  • PDF

XPS Studies of Oxygen Adsorption on Polycrystalline Nickel Surface

  • Lee, Soon-Bo;Boo, Jin-Hyo;Ahn, Woon-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.5
    • /
    • pp.358-362
    • /
    • 1987
  • The interaction of oxygen with polycrystalline nickel surface has been studied by investigating the X-ray photoelectron spectra of O 1s, Ni $2p_{3/2}$, and their valence band electrons. By comparing the oxygen exposure of this work with the reported results of LEED, AES, and work function measurements, it is found that the atomic oxygen, adsorbed dissociatively in the initial stage of exposure, is responsible for a p(2 ${\times}$ 2) structure and a subsequent c(2 ${\times}$ 2) structure on the Ni(100) surface. This dissociatively adsorbed oxygen species forms surface NiO layer subsequently on further oxygen exposure. The NiO layer is more easily formed with the increasing temperature. Non-stoichiometric oxygen species is also found to accompany the NiO layer. It appears prior to the formation of bulk NiO at all of the temperatures of this work except at 523K.

Daytime and Nighttime Photochemical Reactions of the Pure Oxygen System (순수 산소계의 주간 및 야간 광화학반응)

  • Kwnag Sik Yun
    • Journal of the Korean Chemical Society
    • /
    • v.13 no.4
    • /
    • pp.249-261
    • /
    • 1969
  • Studies of photochemical reactions of the pure oxygen atmosphere are made using reaction rate constants and atmospheric data available in the latest literature. The daytime and nighttime variations in atomic oxygen and ozone are computed, based on three different conditions: 1) photochemical equilibrium, 2) direct integrations of the rate equations with modifications and approximation to the equations, and 3) by numerical integrations. The departure from the photochemical equilibrium concentrations during day and nighttime are discussed by comparing the results obtaind from the three conditions.

  • PDF

Decomposition of Oxalic Acid in Nitric Acid by UV Radiation (질산매질에서 UV 조사에 의한 옥살산 분해)

  • Kim, Eung-Ho;Kim, Young-Hwan;Chung, Dong-Yong;Yoo, Jae-Hyung
    • Applied Chemistry for Engineering
    • /
    • v.8 no.1
    • /
    • pp.108-113
    • /
    • 1997
  • Decomposition of oxalic acid was studied in nitric acid media by using UV radiations. The UV source is Hg-lamp, emitting $2537{\AA}$ wavelength. Oxalic acid was not decomposed by itself in spite of UV radiation, but in the presence of nitric acid decomposed easily under UV radiation. It is believed that oxygen radical generated from nitrate ion by UV radiation results in the decomposition of oxalic acid. Decomposition rate of oxalic acid reached a maximum in around 0.5M $HNO_3$ and then gradually decreased with nitric acid concentration. The decrease can be also explained to be due to the reaction between oxygen radical and $NO_3{^-}$.

  • PDF

Fatigue crack growth characteristics of nitrogen-alloyed type 347 stainless steel under operating conditions of a pressurized water reactor

  • Min, Ki-Deuk;Hong, Seokmin;Kim, Dae-Whan;Lee, Bong-Sang;Kim, Seon-Jin
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.752-759
    • /
    • 2017
  • The fatigue crack growth behavior of Type 347 (S347) and Type 347N (S347N) stainless steel was evaluated under the operating conditions of a pressurized water reactor (PWR). These two materials showed different fatigue crack growth rates (FCGRs) according to the changes in dissolved oxygen content and frequency. Under the simulated PWR conditions for normal operation, the FCGR of S347N was lower than that of S347 and insensitive to the changes in PWR water conditions. The higher yield strength and better corrosion resistance of the nitrogen-alloyed Type 347 stainless steel might be a main cause of slower FCGR and more stable properties against changes in environmental conditions.

Synthesis and Characteristics of CU/CUO Nanopowders by Pulsed Wire Evaporativn(PWE) Method (전기폭발법에 의한 CU/CUO 나노분말의 제조 및 분말특성)

  • Maeng, D.Y.;Rhee, C.K.;Lee, N.H.;Park, J.H.;Kim, W.W.;Lee, E.G.
    • Korean Journal of Materials Research
    • /
    • v.12 no.12
    • /
    • pp.941-946
    • /
    • 2002
  • Both Cu and Cu-oxide nanopowders have great potential as conductive paste, solid lubricant, effective catalysts and super conducting materials because of their unique properties compared with those of commercial micro-sized ones. In this study, Cu and Cu-oxide nanopowders were prepared by Pulsed Wire Evaporation (PWE) method which has been very useful for producing nanometer-sized metal, alloy and ceramic powders. In this process, the metal wire is explosively converted into ultrafine particles under high electric pulse current (between $10^4$ and $10^{ 6}$ $A/mm^2$) within a micro second time. To prevent full oxidations of Cu powder, the surface of powder has been slightly passivated with thin CuO layer. X-ray diffraction analysis has shown that pure Cu nanopowders were obtained at $N_2$ atmosphere. As the oxygen partial pressure increased in $N_2$ atmosphere, the gradual phase transformation occurred from Cu to $Cu_2$O and finally CuO nanopowders. The spherical Cu nanopowders had a uniform size distribution of about 100nm in diameter. The Cu-oxide nanopowders were less than 70nm with sphere-like shape and their mean particle size was 54nm. Smaller size of Cu-oxide nanopowders compared with that of the Cu nanopowders results from the secondary explosion of Cu nanopowders at oxygen atmosphere. Thin passivated oxygen layer on the Cu surface has been proved by XPS and HRPD.

Induction of Apoptosis by Gamma-Irradiated Apigenin in H1975 Human Non-Small Lung Cells (감마선 조사된 Apigenin의 H1975 인체 비소폐암세포에서의 Apoptosis 유발 효과)

  • Park, Jae-Nam;Byun, Eui-Baek;Kim, Jwa-Jin;Jang, Beon-Su;Park, Sang-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.6
    • /
    • pp.816-822
    • /
    • 2015
  • The objective of this study was to evaluate the anticancer effects of gamma-irradiated apigenin against various human cancer cells. Structural changes were analyzed by high pressure liquid chromatography. Gamma-irradiated apigenin showed a new peak distinguished from the main peak of apigenin (non-irradiated). Cytotoxic effects in human normal cells (HS68) were not observed upon gamma-irradiated and non-irradiated apigenin treatment. However, gamma-irradiated apigenin treatment significantly increased cytotoxicity against non-small lung cancer cells. For apoptosis induction activity tested by Annexin V/PI staining, gamma-irradiated apigenin showed a stronger effect than non-irradiated apigenin, and the level of reactive oxygen species was apparently elevated by gamma-irradiated apigenin treatment. These results suggest that gamma irradiation could be an effective method for development of a new physiological compound from an original compound by inducing structural changes.