• 제목/요약/키워드: Atomic Force Microscope

검색결과 688건 처리시간 0.036초

Design and Fabrication of a Vacuum Chamber for a Commercial Atomic Force Microscope

  • Park, Sang-Joon;Jeong, Yeon-Uk;Park, Soyeun;Lee, Yong Joong
    • Applied Science and Convergence Technology
    • /
    • 제23권2호
    • /
    • pp.97-102
    • /
    • 2014
  • A vacuum chamber for a commercial atomic force microscope (AFM) is designed and fabricated. Only minimal modifications were made to an existing microscope in an effort to work in a vacuum environment, while most of the available AFM functionalities were kept intact. The optical alignment needed for proper AFM operations including a SLD (superluminescent diode) and a photodiode can be made externally without breaking the vacuum. A vacuum level of $5{\times}10^{-3}$ torr was achieved with a mechanical pump. An enhancement of the quality factor was observed along with a shift in the resonance frequency of a non-contact-mode cantilever in a vacuum. Topographical data of a calibration sample were also obtained in air and in a low vacuum using the non-contact mode and the results were compared.

접촉모드 AFM의 시스템 분석 및 제어 (Analysis and Control f Contact Mode AFM)

  • 정회원;심종엽;권대갑
    • 한국정밀공학회지
    • /
    • 제15권3호
    • /
    • pp.99-106
    • /
    • 1998
  • Recently, scientists introduced a new type of microscope capable of investigating nonconducting surfaces in an atomic scale, which is called AFM (Atomic Force Microscope). It was an innovative attempt to overcome the limitation of STM (Scanning Tunnelling Microscope) which has been able to obtain the image of conducting surfaces. Surfaces of samples are imaged with atomic resolution. The AFM is an imaging tool or a profiler with unprecedented 3-D resolution for various surface types. The AFM technology, however, leaves a lot of room for improvement due to its delicate and fragile probing mechanism. One of the room for improvements is gap control between probe tip and sample surface. Distance between probe tip and sample surface must be kept in below one Angtrom in order to measure the sample surface in Angstrom resolution. In this paper, AFM system modeling, experimental system identification and control scheme based on system identification are performed and finally sample surface is measured by home-built AFM with such a control scheme.

  • PDF

Study on the Elastic Characteristics of Living Cells using Atomic Force Microscope Indentation Technique

  • Kwon Eun-Young;Kim Young-Tae;Kim Dae-Eun
    • KSTLE International Journal
    • /
    • 제7권1호
    • /
    • pp.10-13
    • /
    • 2006
  • In this work, imaging and study of elastic property of the living cell was performed. The motivation of this work was to seek the possibility of exploiting Young's modulus as a disease indicator using Atomic Force Microscope (AFM) and also to gain fundamental understanding of cell mechanics for applications in medical nanorobots of the future. L-929 fibroblast adherent cell was used as the sample. Imaging condition in cell culturing media environment was done in very low speed ($20{\mu}m/ s$) compared to that in the ambient environment. For measuring the Young's modulus of the living cell, AFM indentation method was used. From the force-distance curve obtained from the indentation experiment the Young's modulus could be derived using the Hertz model. The Young's modulus of living L-929 fibroblast cell was $1.29{\pm}0.2$ kPa.

하이브리드형 AFM/SCM을 이용한 레이저 미세 가공 표면 측정 (Precision measurement of a laser micro-processing surface using a hybrid type of AFM/SCM)

  • 김종배;김경호;배한성;남기중;이대철;서운학
    • 한국레이저가공학회:학술대회논문집
    • /
    • 한국레이저가공학회 2006년도 추계학술발표대회 논문집
    • /
    • pp.123-127
    • /
    • 2006
  • Hybrid type microscope with a Scanning Confocal Microscope (SCM) and a shear-force Atomic Force Microscope (AFM) is suggested and preliminarily studied. A image of $120{\times}120{\mu}m^2$ is obtained within 1 second by SCM because scan speed of a X-axis and Y-axis are 1kHz and 1Hz, respectively. Shear-force AFM is able to correctly measure the hight and width of sample with a resolution 8nm. However, the scan speed is slow and it is difficult to distinguish a surface composed of different kinds of materials. We have carried out the measurement of total image of a sample by SCM and an exact analysis of each image by shear-force AFM.

  • PDF

원자현미경(AFM)에서 마찰력 측정을 위한 새로운 보정 기술 연구 (A New Method for Lateral Force Calibration in Atomic Force Microscope)

  • 윤의성;김홍준;;공호성
    • Tribology and Lubricants
    • /
    • 제21권5호
    • /
    • pp.221-226
    • /
    • 2005
  • A new calibration method for exact measurement of friction force in atomic force microscope (AFM) is presented. A new conversion factor involves a contact factor affected by tip, cantilever and contact stiffness. Especially the effect of contact stiffness on the conversion factor between lateral force and lateral signal is considered. Conventional conversion factor and a new modified conversion factor were experimentally compared. Results showed that a new calibration method could minimize the effect of normal load on friction force and improve the conventional method. A new method could be applied to the specimens with different physical properties.

Nanoscale Processing on Silicon by Tribochemical Reaction

  • Kim, J.;Miyake, S.;Suzuki, K.
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.67-68
    • /
    • 2002
  • The properties and mechanism of silicon protuberance and groove processing by diamond tip sliding using atomic force microscope (AFM) in atmosphere were studied. To control the height of protuberance and the depth of groove, the processed height and depth depended on load and diamond tip radius were evaluated. Nanoprotuberances and grooves were fabricated on a silicon surface by approximately 100-nm-radius diamond tip sliding using an atomic force microscope in atmosphere. To clarify the mechanical and chemical properties of these parts processed, changes in the protuberance and groove profiles due to additional diamond tip sliding and potassium hydroxide (KOH) solution etching were evaluated. Processed protuberances were negligibly removed, and processed grooves were easily removed by additional diamond tip sliding. The KOH solution selectively etched the unprocessed silicon area. while the protuberances, grooves and flat surfaces processed by diamond tip sliding were negligibly etched. Three-dimensional nanofabrication is performed in this study by utilizing these mechanic-chemically processed parts as protective etching mask for KOH solution etching.

  • PDF

Atomic Force Microscope Tip 의 마멸특성에 관한 연구 (Wear Characteristics of Atomic force Microscope Tip)

  • 정구현;김대은
    • 한국정밀공학회지
    • /
    • 제20권5호
    • /
    • pp.189-195
    • /
    • 2003
  • Atomic Force Microscope (AFM) has been widely used in micro/nano-scale studies and applications for. the last few decade. In this work, wear characteristics of silicon-based AFM tip was investigated. AFM tip shape was observed using a high resolution SEM and the wear coefficient was approximately calculated based on Archard's wear equation. It was shown that the wear coefficient of silicon and silicon nitride were in the range of ${10}^{-1}$~${10}^{-3}$ and ${10}^{-3}$~${10}^{-4}$, respectively. Also, the effect of relative humidity and sliding distance on adhesion-induced tip wear was discussed. It was found that the tip wear has more severe for harder test materials. Finally, the probable wear mechanism was analyzed from the adhesive and abrasive interaction point of view.

원자간력 현미경 탄소 나노튜브 팁을 이용한 플러렌 나노 구조물 제작에 관한 분자동역학 시뮬레이션 (Molecular Dynamics Simulations of Fullerene Nanostructure Fabrications by Atomic Force Microscope Carbon Nanotube tip)

  • 이준하;이홍주
    • 한국전기전자재료학회논문지
    • /
    • 제17권8호
    • /
    • pp.812-822
    • /
    • 2004
  • This paper shows that carbon nanotubes can be applied to a nanopipette. Nano space in atomic force microscope multi-wall carbon nanotube tips is filled with molecules and atoms with charges and then, the tips can be applied to nanopipette when the encapsulated media flow off under applying electrostatic forces. Since the nano space inside the tips can be refilled, the tips can be permanently used in ideal conditions of no chemical reaction and no mechanical deformation. Molecular dynamics simulations for nanopipette applications demonstrated the possibility of nano-lithography or single-metallofullerene-transistor array fabrication.

서브나노급 정밀도의 2 차원 원자현미경 개발 (Two Dimensional Atomic Force Microscope)

  • 이동연;권대갑
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1778-1783
    • /
    • 2008
  • A compact and two-dimensional atomic force microscope (AFM) using an orthogonal sample scanner, a calibrated homodyne laser interferometer and a commercial AFM head was developed for use in the nanometrology field. The x and y position of the sample with respect to the tip are acquired by using the laser interferometer in the open-loop state, when each z data point of the AFM head is taken. The sample scanner which has a motion amplifying mechanism was designed to move a sample up to $100{\times}100{\mu}m^2$ in orthogonal way, which means less crosstalk between axes. Moreover, the rotational errors between axes are measured to ensure the accuracy of the calibrated AFM within the full scanning range. The conventional homodyne laser interferometer was used to measure the x and y displacements of the sample and compensated via an X-ray interferometer to reduce the nonlinearity of the optical interferometer. The repeatability of the calibrated AFM was measured to sub-nm within a few hundred nm scanning range.

  • PDF