• 제목/요약/키워드: Atmospheric temperature and humidity

검색결과 284건 처리시간 0.022초

대설관측실험(Experiment on Snow Storms At Yeongdong: ESSAY) 기간 중 두 제조사 라디오존데 기온과 습도 센서 상호 비교 (Intercomparison between Temperature and Humidity Sensors of Radiosonde by Different Manufacturers in the ESSAY (Experiment on Snow Storms At Yeongdong) Campaign)

  • 서원석;은승희;김병곤;성대경;이규민;전혜림;최병철;고아름;장기호;양승구
    • 대기
    • /
    • 제26권2호
    • /
    • pp.347-356
    • /
    • 2016
  • Radiosonde is an observation equipment that measures pressure (geopotential height), temperature, relative humidity and wind by being launched up from the ground. Radiosonde data which serves as an important element of weather forecast and research often causes a bias in a model output due to accuracy and sensitivity between the different manufacturers. Although Korean Meteorological Administration (KMA) and several institutes have conducted routine and intensive radiosonde observations, very few studies have been done before on the characteristics of radiosonde performance. Analyzing radiosonde observation data without proper understanding of the unique nature of those sensors may lead to a significant bias in the analysis of results. To evaluate performance and reliability of radiosonde, we analyzed the differences between two sensors made by the different manufacturers, which have been used in the campaign of Experiment on Snow Storm At Yeongdong (ESSAY). We improved a couple of methods to launch the balloon being attached with the sensors. Further we examined cloud-layer impacts on temperature and humidity differences for the analysis of both sensors' performance among various weather conditions, and also compared daytime and nighttime profiles to understand temporal dependence of meteorological sensors. The overall results showed that there are small but consistent biases in both temperature and humidity between different manufactured sensors, which could eventually secure reliable precisions of both sensors, irrespective of accuracy. This study would contribute to an improved sounding of atmospheric vertical states through development and improvement of the meteorological sensors.

항공기 주기환경이 대기부식위험도에 미치는 영향 (The Effect of Aircraft Parking Environment on Atmospheric Corrosion Severity)

  • 윤주희;이두열;박승렬;김민생;최동수
    • Corrosion Science and Technology
    • /
    • 제20권2호
    • /
    • pp.94-104
    • /
    • 2021
  • Atmospheric corrosion severity associated with aircraft parking environment was studied using metallic specimens, and temperature and humidity sensors installed at each aircraft operating base. Data were analyzed after a year of exposure. Silver was used to measure chloride deposition by integrating X-ray photoelectron spectroscopy depth profiles. Carbon steel was utilized to determine the corrosion rate by measuring the weight loss. The time of wetness was determined using temperature and humidity sensor data. Analysis of variance followed by Tukey's "honestly significant difference" test indicated that atmospheric environment inside the shelter varied significantly from that of unsheltered parking environment. The corrosion rate of unsheltered area also varies with the roof. Hierarchical clustering analysis of the measured data was used to classify air bases into groups with similar atmospheric corrosion. Bases where aircraft park at a shelter can be grouped together regardless of geographical location. Unsheltered bases located inland can also be grouped together with sheltered bases as long as the aircraft are parked under the roof. Environmental severity index was estimated using collected data and validated using the measured corrosion rate.

토양 매설 배관의 음극방식과 환경인자 간의 상관관계 (Relationship between the Cathodic Protection of Pipe Buried in Soil and Environmental Factors)

  • 최승헌;원석연;유영란;김영식
    • Corrosion Science and Technology
    • /
    • 제21권5호
    • /
    • pp.372-380
    • /
    • 2022
  • The external corrosion control of buried pipes can be achieved by a combination of coatings and cathodic protection to maximize effectiveness. One of the factors affecting cathodic protection is the environmental soil conditions. Because soil is a kind of electrolyte, the environmental conditions of soil may be changed by the atmospheric environment. Therefore, in this study, changes in environmental soil factors by atmospheric environmental factors were monitored. In cathodic protection, on-potential and off-potential were measured from December 2021 to July 2022. The effects of external environmental factors and soil environmental factors on cathodic protection were analyzed. Changes in outdoor temperature affected soil temperature, and soil conductivity had a proportional relationship with soil humidity, but outdoor humidity and precipitation did not significantly affect humidity and conductivity of the soil. In contrast, in cathodic protection, the on-potential was affected by temperature, humidity, the conductivity of the soil, and the anode used, but the off-potential was little affected by these factors.

기상요소별 사고 시나리오에 따른 정량적 위험성평가 피해영향범위 분석 (Analysis of Impact Zone of Quantitative Risk Assessment based on Accident Scenarios by Meteorological Factors)

  • 김현섭;전병한
    • 대한환경공학회지
    • /
    • 제39권12호
    • /
    • pp.685-688
    • /
    • 2017
  • 장외영향평가의 정량적 위험성평가에 사용되는 ALOHA와 PHAST 프로그램으로 화학물질관리법상 사고대비물질로 지정하고 있는 염소의 누출 사고 시나리오를 가정하여 모델링 하였다. 연평균 기온, 풍속, 습도, 대기안정도를 변화시키면서 ERPG-2 농도에 해당하는 끝점거리를 산출하였으며, 산출된 끝점거리 값을 비교하여 각각의 기상요소와 끝점거리 간의 상관관계와 ALOHA와 PHAST의 장단점 분석하였다. 연구결과 ALOHA는 연평균 기온과 습도와의 상관관계는 없거나 작고, 풍속과 대기안정도와의 상관관계가 큰 것으로 조사되었다. PHAST의 경우 연평균 기온, 풍속, 습도, 대기안정도 모든 기상요소와의 상관관계가 있었으며, 그 중 대기안정도의 영향을 가장 크게 받는 것으로 조사되었다.

외기상태의 변화에 따른 실내 환경인자의 민감도 분석 (Sensitivity Analysis of Indoor Environment Factors along with Changes of Outdoor Air Condition)

  • 조석호
    • 한국환경과학회지
    • /
    • 제19권2호
    • /
    • pp.125-136
    • /
    • 2010
  • The most important factors relating to the indoor air environment are temperature, airflow, humidity, and contaminant concentration. A sensitivity analysis of indoor environment factors was carried out to grasp influences along with changes of atmospheric conditions. An integrated multizone model was used to predict these sensitivities. This model was applied to an apartment with six zones. Airflow rates are influenced very seriously by changes of wind direct or wind velocity, but are influenced very slightly by changes of outdoor air temperature and are not influenced at all by changes of outdoor air humidity or contaminant concentration. Indoor air temperatures are influenced very directly by changes of outdoor air temperature, but are influenced very slightly by wind direction or wind velocity and are not influenced at all by changes of outdoor air humidity or contaminant concentration. Indoor air humidities are influenced very directly by changes of outdoor air humidity, but are not influenced at all by changes of outdoor air contaminant concentration and have little or no influence by changes of wind direction, wind velocity, or outdoor air temperature. Indoor air contaminant concentrations are influenced very seriously by changes of wind direct or wind velocity, but are influenced somewhat by changes of outdoor air contaminant concentration and are influenced very slightly by changes of outdoor air temperature and are not influenced at all by changes of outdoor air humidity.

서울시 대기중 오존오염도의 연도별 변화와 그 영향인자 분석: 광화문 지역을 중심으로 (Yearly Variation and Influencing Factors of Ozone Concentration in the Ambient Air of Seoul)

  • 이기원;권숙표;정용
    • 한국대기환경학회지
    • /
    • 제9권1호
    • /
    • pp.107-115
    • /
    • 1993
  • This study was carried out to find the characteristics of surface ozone concentration data obtained during 1988-1991 by the Korea Ministry of Environment. Seasonal data (spring, summer, autumn and winter) wre obtained in May, August, November and February respectively at Kwanghwamun in Seoul. The pollutants analyzed in this study are $SO_2, TSP, CO, NO, NO_2 and NO_2/NO$. Atmospheric factors such as solar radiation, wind speed, relative humidity, cloud amount and atmospheric temperature are also analyzed. The influence of pollutants and atmospheric factors that affect ozone concentration were analyzed by statistical method. The results are summarized as follows : 1. The ozone concentration varied seasonally. The maximum values were 23 ppb in spring, 33 ppb in summer, 16 ppb in autumn and 13 ppb in winter. So the seasonal ozone value was highest in Summer. 2. Te diurnal concentration of ozone was highest during 2-4 P. M. and was very low in the morning and evening. 3. The maximal correlation coefficients of each season between ozone concentration and the influencing pollutants or atmospheric factors asr as follows ; a. spring, r = 0.44(solar radiation) b. summer, r = -0.59(relative humidity) c. autumn, r = -0.55(relative humidity) d. winter, r = -0.58($NO_2$) 4. The major factor affecting the ozone concentration in spring was solar radiation, Relative humidity was the first affecting factor in summer, autumn and $NO_2$ concentration was dominant in winter.

  • PDF

Numerical Prediction on Snowfall Intensity in the Mountainous Coastal Region

  • Choi, Hyo;Lee, Han-Se;Kim, Tae-Kook;Choi, Doo-Sun
    • 한국환경과학회:학술대회논문집
    • /
    • 한국환경과학회 2003년도 International Symposium on Clean Environment
    • /
    • pp.89-94
    • /
    • 2003
  • The formation of a severe snow storm occurred in the mountainous coastal region near Mt. Taegualyang and Kangnung city in the eastern part of Korea was investigate from 0900LST, December 7 through 9, 2002, using MM5 model. As synoptic scale easterly wind induced a great amount of moisture from the East Sea into the inland coastal region and sea-breeze further induced more moisture from the basin toward the top of the mountain side. The lifted moisture toward the mountain top was cooled down along the eastern slope of the mountain and near the mid of the mountain the moisture was much cooled down with relative humidity of 100% under the air temperature below $O^{\circ}C$, resulting in the formation of snow. Relative humidity of 100% generally occurred at the 5km away from the coast toward the inland mountain and the band of 100% RH was parallel to the coastal line. The 100% band coincided with minimum air temperature band and line.

  • PDF

Predicting Atmospheric Concentrations of Benzene in the Southeast of Tehran using Artificial Neural Network

  • Asadollahfardi, Gholamreza;Mehdinejad, Mahdi;Mirmohammadi, Mohsen;Asadollahfardi, Rashin
    • Asian Journal of Atmospheric Environment
    • /
    • 제9권1호
    • /
    • pp.12-21
    • /
    • 2015
  • Air pollution is a challenging issue in some of the large cities in developing countries. In this regard, data interpretation is one of the most important parts of air quality management. Several methods exist to analyze air quality; among these, we applied the Multilayer Perceptron (MLP) and Radial Basis Function (RBF) methods to predict the hourly air concentration of benzene in 14 districts in the municipality of Tehran. Input data were hourly temperature, wind speed and relative humidity. Both methods determined reliable results. However, the RBF neural network performance was much closer to observed benzene data than the MLP neural network. The correlation determination resulted in 0.868 for MLP and 0.907 for RBF, while the Index of Agreement (IA) was 0.889 for MLP and 0.937 for RBF. The sensitivity analysis related to the MLP neural network indicated that the temperature had the greatest effect on prediction of benzene in comparison with the wind speed and humidity in the study area. The temperature was the most significant factor in benzene production because benzene is a volatile liquid.

동북 아시아 지역에서의 대기중 재료부식 시험에 관한 연구 (The Study on the Atmospheric Corrosion Tests of Materials in Northeast Asia)

  • 김선태;임봉빈
    • 한국환경과학회지
    • /
    • 제7권3호
    • /
    • pp.361-368
    • /
    • 1998
  • The structure such as building and cultural properties was composed of various materials like wood, metal and stone that have been utilized and exposed to air, wind and rain far a long time. However, because of their special characteristics as structure, collecting of samples that may involve their destruction cannot be permitted, ever for material analysis. Therefore, h order to study the Influence of atmospheric pollution on structure, atmospheric corrosion tests were achieved by making use of materials(bronze. ancient copper, copper, steel and marble) in field exposure tests. Atmospheric exposure sites are selected from places which are characterized by urban, rural, Industrial and marine enoronments In Northeast Asia. According to the results of atmospheric corrosion tests: The corrosion rates of Industrial states In china were more serious than other sampling sites. In the correlation of meteorological factors. wet hours was defiled as Intogeacted hours under that atmospheric temperature is above $0^{\circ}C$ and relative humidity in above 80% that has a great influence on corrosion tests of materials in case of a short time. The relative humidity was above about 75% that resulted in great increase of corrosion rates. In the esimation of corrosion rates between materials, corrosion rates of steel was about thirty times and decuple larger than that of other materials excluding marble in unshelterd exposure and In sheltered exposure.

  • PDF

서울시 대기 중 $H_2O_2$의 농도 (Hydrogen Peroxide Concentrations in Air in Seoul)

  • 강충민;김희강
    • 한국대기환경학회지
    • /
    • 제16권1호
    • /
    • pp.61-68
    • /
    • 2000
  • Gas-phase hydrogen peroxide(H2O2) concentrations were measured to investigate it's distribution in the ambient air in downtown Seoul(Kwanghwamum and Mullae-dong). These measurements were made during four season, from April 30, 1998 to January 29, 1999, using Cold Trap and HPLC. Measurements were also made of other photochemical oxidants and trace gases(O3, NO2, CO and SO2) and meteorological parameters(relative humidity, temperature, solar radiation and wind speed). The mean of all observations was 0.10 ppbv and the range measured was below the level of detection(>0.01 ppbv) to 0.47ppbv. The higher seasonal mean concentrations showed during the summer(0.21 ppbv) and concentrations of H2O2 showed a diurnal variation with maximum concentrations in the afternoon(12:30∼14:00). The results from the corrrelation analysis showed that the concentration of gaseous H2O2 is strongly dependent on the other air pollutants(NO2, CO and O3) and meteorological parameters(relative humidity, temperature and solar radiation.)

  • PDF