• 제목/요약/키워드: Atmospheric pressure growth

검색결과 75건 처리시간 0.026초

실리콘 웨이퍼 직접 접합에서 기포형 접합 결합에 관한 연구 (A study on Bubble-like Defects in Silicon Wafer Direct Bonding)

  • 문도민;홍진균;유학도;정해도
    • 한국재료학회지
    • /
    • 제11권3호
    • /
    • pp.159-163
    • /
    • 2001
  • 실리콘 웨이퍼 직접 접합을 성공하기 위해서는 양호한 접합면을 구성하여야 하며, 이를 위해 접합면에서 발생하는 주요 결함 중 하나인 기포형 접합 결함을 억제하여야 한다. 본 연구에서는 접합면에서 발생하는 기포형 결함의 상온 접합 및 열처리 과정에서의 거동을 관찰하여 내부의 압력이 증가함을 직접 관찰할 수 있었다. 또한, 대기압 하의 열처리에서 결함이 발생하지 않는 $SiO_2$-$SiO_2$ 접합 웨이퍼가 진공에서의 열처리에서 결함이 발생하는 현상을 통해 기포형 결함의 내부 압력과 성장과의 관계를 실험을 통하여 증명할 수 있었다.

  • PDF

대기 분위기에서 열증발법에 의해 성장된 여러 가지 형상의 일차원 MgO 나노구조 (One-Dimensional MgO Nanostructures with Various Morphologies Grown by Thermal Evaporation Method under Atmospheric Environment)

  • 김남우;김진수;이근형
    • 한국재료학회지
    • /
    • 제33권7호
    • /
    • pp.279-284
    • /
    • 2023
  • One-dimensional MgO nanostructures with various morphologies were synthesized by a thermal evaporation method. The synthesis process was carried out in air at atmospheric pressure, which made the process very simple. A mixed powder of magnesium and active carbon was used as the source powder. The morphologies of the MgO nanostructures were changed by varying the growth temperature. When the growth temperature was 700 ℃, untapered nanowires with smooth surfaces were grown. As the temperature increased to 850 ℃, 1,000 ℃ and 1,100 ℃, tapered nanobelts, tapered nanowires and then knotted nanowires were sequentially observed. X-ray diffraction analysis revealed that the MgO nanostructures had a cubic crystallographic structure. Energy dispersive X-ray analysis showed that the nanostructures were composed of Mg and O elements, indicating high purity MgO nanostructures. Fourier transform infrared spectra peaks showed the characteristic absorption of MgO. No catalyst particles were observed at the tips of the one-dimensional nanostructures, which suggested that the one-dimensional nanostructures were grown in a vapor-solid growth mechanism.

Size and Density of Graphene Domains Grown with Different Annealing Times

  • Jung, Da Hee;Kang, Cheong;Nam, Ji Eun;Kim, Jin-Seok;Lee, Jin Seok
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권11호
    • /
    • pp.3312-3316
    • /
    • 2013
  • Single crystals of hexagonal graphenes were successfully grown on Cu foils using the atmospheric pressure chemical vapor deposition (CVD) method. We investigated the effects of reaction parameters, such as the growth temperature and annealing time, on the size, coverage, and density of graphene domains grown over Cu foil. The mean size of the graphene domains increased significantly with increases in both the growth temperature and annealing time, and similar phenomena were observed in graphene domains grown by low pressure CVD over Cu foil. From the comparison of micro Raman spectroscopy in the graphene films grown with different annealing times, we found that the nucleation and growth of the domains were strongly dependent on the annealing time and growth temperature. Therefore, we confirmed that when reaction time was same, the number of layers and the degree of defects in the synthesized graphene films both decreased as the annealing time increased.

Effect of Inactivating Salmonella Typhimurium in Raw Chicken Breast and Pork Loin Using an Atmospheric Pressure Plasma Jet

  • Kim, Hyun-Joo;Yong, Hae In;Park, Sanghoo;Kim, Kijung;Bae, Young Sik;Choe, Wonho;Oh, Mi Hwa;Jo, Cheorun
    • Journal of Animal Science and Technology
    • /
    • 제55권6호
    • /
    • pp.545-549
    • /
    • 2013
  • The optimal conditions for applications of an atmospheric pressure plasma (APP) jet for the inactivation of Salmonella Typhimurium in chicken breast and pork loins were investigated. APP jet treatment for 10 min (versus 5 minutes) showed a higher inactivation of S. Typhimurium in an agar plate, with the best effect at a distance of 20 mm. A treatment on both sides (both-side treatment) for 2.5 + 2.5 min showed a greater inhibition on S. Typhimurium growth compared to single-side treatment for 5 min, with reduction levels of 0.66 log CFU/g in chicken breast and 1.33 log CFU/g in pork loin, respectively. However, there was no significant difference between single-side treatment for 10 min and both-side treatment for 5 + 5 min in chicken breasts and pork loin samples. In conclusion, APP jet treatment conditions, including distance, time, and direction, may affect the inactivation efficiency of S. Typhimurium. In this experiment, distance of 20 mm and both-side treatment were the best conditions. Therefore, the optimal APP jet treatment conditions were evaluated to maximize its practical efficiency.

분리기 내부 압력 변화에 따른 세라믹 입자 분리 거동 전산모사 (Effect of internal pressure variation on the ceramic particle separation characteristics : computer simulation)

  • 우효상;심광보;정용재
    • 한국결정성장학회지
    • /
    • 제13권6호
    • /
    • pp.304-308
    • /
    • 2003
  • 분리기 내 압력 조절을 통하여 압력 변화가 세라믹 입자 $Al_2O_3$, $Fe_2O_3$ 분급에 미치는 영향을 수치 해석적으로 분석하였다. 입자 분급 해석을 위해 3차원 Lagrangian approach를 이용하였으며, 이를 통해 입자의 분리기 내 거동 경로를 추적하여 각 압력에 따른 분리 가능한 최소 입자 크기(cut-diameter)와 분리율(separation rate)를 계산하였다. 압력 감소는 입자를 운반하는 아르곤 가스의 밀도를 감소시키면서, 분리기 내부 압력 손실을 줄이는 원인이 되었다. 이로 인해 상압에서 분리기 압력이 저압 상태로 변함에 따라, 더 미세한(수 $\mu\textrm{m}$) 입자가 분리 가능함이 예측되었다. 특히 50 torr의 저압 하에서 계산된 세라믹 입자의 분급 양상을 분석하면,$Al_2O_3$ 입자는 4 $\mu\textrm{m}$, $Fe_2O_3$경우는 3$\mu\textrm{m}$ 크기의 입자 분리가 가능하였다.

화학기상증착법으로 성장시킨 4H-SiC 동종박막의 성장 특성 (Growth characteristics of 4H-SiC homoepitaxial layers grown by thermal CVD)

  • Jang, Seong-Joo;Jeong, Moon-Taeg;Seol, Woon-Hag;Park, Ju-Hoon
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 1999년도 PROCEEDINGS OF 99 INTERNATIONAL CONFERENCE OF THE KACG AND 6TH KOREA·JAPAN EMG SYMPOSIUM (ELECTRONIC MATERIALS GROWTH SYMPOSIUM), HANYANG UNIVERSITY, SEOUL, 06월 09일 JUNE 1999
    • /
    • pp.271-284
    • /
    • 1999
  • As a semiconductor material for electronic devices operated under extreme environmental conditions, silicon carbides (SiCs) have been intensively studied because of their excellent electrical, thermal and other physical properties. The growth characteristics of single-crystalline 4H-SiC homoepitaxial layers grown by a thermal chemical vapor deposition (CVD) were investigated. Especially, the successful growth condition of 4H-SiC homoepitaxial layers using a SiC-uncoated graphite susceptor that utilized Mo-plates was obtained. The CVD growth was performed in an RF-induction heated atmospheric pressure chamber and carried out using off-oriented substrates prepared by a modified Lely method. In order to investigate the crystallinity of grown epilayers, Nomarski optical microscopy, Raman spectroscopy, photoluminescence(PL), scanning electron microscopy (SEM) and other techniques were utilized. The best quality of 4H-SiC homoepitaxial layers was observed in conditions of growth temperature 1500$^{\circ}C$ and C/Si flow ratio 2.0 of C3H3 0.2sccm & SiH4 0.3sccm. The growth rate of epilayers was about 1.0$\mu\textrm{m}$/h in the above growth condition.

  • PDF

Influence of Carbonization Conditions in Hydrogen Poor Ambient Conditions on the Growth of 3C-SiC Thin Films by Chemical Vapor Deposition with a Single-Source Precursor of Hexamethyldisilane

  • Kim, Kang-San;Chung, Gwiy-Sang
    • 센서학회지
    • /
    • 제22권3호
    • /
    • pp.175-180
    • /
    • 2013
  • This paper describes the characteristics of cubic silicon carbide (3C-SiC) films grown on a carbonized Si(100) substrate, using hexamethyldisilane (HMDS, $Si_2(CH_3)_6$) as a safe organosilane single precursor in a nonflammable $H_2$/Ar ($H_2$ in Ar) mixture carrier gas by atmospheric pressure chemical vapor deposition (APCVD) at $1280^{\circ}C$. The growth process was performed under various conditions to determine the optimized growth and carbonization condition. Under the optimized condition, grown film has a single crystalline 3C-SiC with well crystallinity, small voids, low residual stress, low carrier concentration, and low RMS. Therefore, the 3C-SiC film on the carbonized Si (100) substrate is suitable to power device and MEMS fields.

Growth characteristics of 4H-SiC homoepitaxial layers grown by thermal CVD

  • Jang, Seong-Joo;Jeong, Moon-Taeg;Seol, Woon-Hag;Park, Ju-Hoon
    • 한국결정성장학회지
    • /
    • 제9권3호
    • /
    • pp.303-308
    • /
    • 1999
  • As a semiconductor material for electronic devices operated under extreme environmental conditions, silicon carbides(SiCs) have been intensively studied because of their excellent electrical, thermal and other physical properties. The growth characteristics of single-crystalline 4H-SiC homoepitaxial layers grown by a thermal chemical vapor deposition (CVD) were investigated. Especially, the successful growth condition of 4H-SiC homoepitaxial layers using a SiC-uncoated atmospheric pressure chamber and carried out using off-oriented substrates prepared by a modified Lely method. In order to investigate the crystallinity of grown epilayers, Nomarski optical microscopy, Raman spectroscopy, photoluninescence(PL), scanning electron microscopy(SEM) and other techniques were utilized. The best quality of 4H-SiC homoepitaxial layers was observed in conditions of growth temperature $1500^{\circ}C$ and C/Si flow ratio 2.0 of $C_{3}H_{8}\;0.2\;sccm\;&\;SiH_{4}\;0.3\;sccm$. The growth rate of epilayers was about $1.0\mu\textrm{m}/h$ in the above growth condition.

  • PDF

승화법에 의한 SiC 단결정 육성 (6H - SiC single crystal growth by sublimation process)

  • 강승민;오근호
    • 한국결정성장학회지
    • /
    • 제5권1호
    • /
    • pp.50-59
    • /
    • 1995
  • 자체 제작된 승화법에 의한 결정성장 장치를 이용하여, 6H-SiC 단결정을 성장하였다. Acheson 법으로 얻어진 6H 결정을 seed substrate로 사용하였으며, SiC source 로부터 분해된 승화 증기가 seed상에서 육성되도록 흑연 도가니내의 온도구배 및 성장온도와 압력을 유기적으로 조절하였다. 성장 전 graphite 도가니 구성부와 SiC 원료에 대한 purification을 행함으로써 성장결정 내부로의 불순물 혼입이 억제되도록 하엿다. 결정 성장시의 육성조건으로 도가니 바닥의 온도는 $2300~2400^{\circ}C$였으며, 성장로 내부의 분위기 압력은 200~400 torr에서 양질의 단결정을 얻을 수 있었다. 성장된 결정을 두께 1.5 mm의 wafer로 제작하여 XRD와 optical microscope로 관찰하였고, FT-IR spectrum으로 분석하였다.

  • PDF

Micro-Spot Atmospheric Pressure Plasma Production for the Biomedical Applications

  • Hirata, T.;Tsutsui, C.;Yokoi, Y.;Sakatani, Y.;Mori, A.;Horii, A.;Yamamoto, T.;Taguchi, A.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.44-45
    • /
    • 2010
  • We are currently conducting studies on culturing and biocompatibility assessment of various cells such as neural stem cells and induced pluripotent stem cells(IPS cells) on carbon nanotube (CNT), on nerve regeneration electrodes, and on silicon wafers with a focus on developing nerve integrated CNT based bio devices for interfacing with living organisms, in order to develop brain-machine interfaces (BMI). In addition, we are carried out the chemical modification of carbon nanotube (mainly SWCNTs)-based bio-nanosensors by the plasma ion irradiation (plasma activation) method, and provide a characteristic evaluation of a bio-nanosensor using bovine serum albumin (BSA)/anti-BSA binding and oligonucleotide hybridization. On the other hand, the researches in the case of "novel plasma" have been widely conducted in the fields of chemistry, solid physics, and nanomaterial science. From the above-mentioned background, we are conducting basic experiments on direct irradiation of body tissues and cells using a micro-spot atmospheric pressure plasma source. The device is a coaxial structure having a tungsten wire installed inside a glass capillary, and a grounded ring electrode wrapped on the outside. The conditions of plasma generation are as follows: applied voltage: 5-9 kV, frequency: 1-3 kHz, helium (He) gas flow: 1-1.5 L/min, and plasma irradiation time: 1-300 sec. The experiment was conducted by preparing a culture medium containing mouse fibroblasts (NIH3T3) on a culture dish. A culture dish irradiated with plasma was introduced into a $CO_2$-incubator. The small animals used in the experiment involving plasma irradiation into living tissue were rat, rabbit, and pick and are deeply anesthetized with the gas anesthesia. According to the dependency of cell numbers against the plasma irradiation time, when only He gas was flowed, the growth of cells was inhibited as the floatation of cells caused by gas agitation inside the culture was promoted. On the other hand, there was no floatation of cells and healthy growth was observed when plasma was irradiated. Furthermore, in an experiment testing the effects of plasma irradiation on rats that were artificially given burn wounds, no evidence of electric shock injuries was found in the irradiated areas. In fact, the observed evidence of healing and improvements of the burn wounds suggested the presence of healing effects due to the growth factors in the tissues. Therefore, it appears that the interaction due to ion/radicalcollisions causes a substantial effect on the proliferation of growth factors such as epidermal growth factor (EGF), nerve growth factor (NGF), and transforming growth factor (TGF) that are present in the cells.

  • PDF