DOI QR코드

DOI QR Code

One-Dimensional MgO Nanostructures with Various Morphologies Grown by Thermal Evaporation Method under Atmospheric Environment

대기 분위기에서 열증발법에 의해 성장된 여러 가지 형상의 일차원 MgO 나노구조

  • Nam-Woo Kim (Division of Advanced Materials Engineering, Dong-Eui University) ;
  • Jin-Su Kim (Division of Advanced Materials Engineering, Dong-Eui University) ;
  • Geun-Hyoung Lee (Division of Advanced Materials Engineering, Dong-Eui University)
  • 김남우 (동의대학교 신소재공학부) ;
  • 김진수 (동의대학교 신소재공학부) ;
  • 이근형 (동의대학교 신소재공학부)
  • Received : 2023.05.18
  • Accepted : 2023.06.29
  • Published : 2023.07.27

Abstract

One-dimensional MgO nanostructures with various morphologies were synthesized by a thermal evaporation method. The synthesis process was carried out in air at atmospheric pressure, which made the process very simple. A mixed powder of magnesium and active carbon was used as the source powder. The morphologies of the MgO nanostructures were changed by varying the growth temperature. When the growth temperature was 700 ℃, untapered nanowires with smooth surfaces were grown. As the temperature increased to 850 ℃, 1,000 ℃ and 1,100 ℃, tapered nanobelts, tapered nanowires and then knotted nanowires were sequentially observed. X-ray diffraction analysis revealed that the MgO nanostructures had a cubic crystallographic structure. Energy dispersive X-ray analysis showed that the nanostructures were composed of Mg and O elements, indicating high purity MgO nanostructures. Fourier transform infrared spectra peaks showed the characteristic absorption of MgO. No catalyst particles were observed at the tips of the one-dimensional nanostructures, which suggested that the one-dimensional nanostructures were grown in a vapor-solid growth mechanism.

Keywords

References

  1. E. M. Sulaiman, F. A-H. Mutlak and U. M. Nayef, Opt. Quantum Electron., 54, 744 (2022).
  2. K. Mageshwari, S. S. Mali, R. Sathyamoorthy and P. S. Patil, Powder Technol., 249, 456 (2013).
  3. B. Mangaalampalli, N. Dumala and P. Grover, Nucleus, 62, 227 (2019).
  4. K. Krishnamoorthy, J. Y. Moon, H. B. Hyun, S. K. Cho and S.-J. Kim, Mater. Chem., 22, 24610 (2012).
  5. C. W. Wong, Y. S. Chan, J. Jeevanandam, K. Pal, M. Bechelany, M. A. Elkodous and G. S. El-Sayyad, J. Cluster Sci., 31, 367 (2020).
  6. L. Zhang, W. Zhu, H. Zhang, S. Bi and Q. Zhang, Advances, 4, 30542 (2014).
  7. M. Kuang, Y. Shang, G. Yang, B. Liu and B. Yang, Environ. Sci. Pollut. Res., 26, 18825 (2019).
  8. C. Y. Cao, J. Qu, F. Wei, H. Liu and W. G. Song, ACS Appl. Mater. Interfaces, 4, 4283 (2012). https://doi.org/10.1021/am300972z
  9. C. N. Rao, U. T. Nakate, R. J. Choudhary and S. N. Kale, Appl. Phys. Lett., 103, 151107 (2013). https://doi.org/10.1063/1.4824772
  10. S. Ileda, K. Miura, H. Yamantoo, H. D. Gan, M. Endo, S. Kanai, J. Hayakawa, F. Matsukara and H. Ohno, Nat. Mater., 9, 721 (2010).
  11. O. B. Koper, I. Lagadic, A. Volodin and K. J. Klabunde, Chem. Mater., 9, 2468 (1997).
  12. Q. Yang, J. Sha, L. Wang, J. Wang and D. Yang, Mater. Sci. Eng., C, 26, 1097 (2006).
  13. Y. Yan, L. Zhou and Y. Zhang, J. Phys. Chem. C, 112, 19831 (2008).
  14. Z. Yan, R. Bao, C. M. Busta and D. B. Chrisey, Nanotechnology, 22, 265610 (2011).
  15. M. S. Mastuli, N. Kamarulzaman, M. A. Nawawi, A. M. Mahat, R. Rusdi and N. Kamarudin, Nanoscale Res. Lett., 21, 134 (2014).
  16. X. Li, W. Xiao, G. He, W. Zheng, N. Yu and M. Tan, Colloids Surf., A, 408, 79 (2012). https://doi.org/10.1016/j.colsurfa.2012.05.034
  17. M. Biswas, E. McGlynn, M. O. Henry, M. McCann and A. Rafferty, J. Appl. Phys., 105, 094306 (2009).
  18. Y. Zhang, M. Ma, X. Zhang, B. Wang and R. Liu, J. Alloys Compd., 590, 373 (2014).
  19. N. M. A. Hadia and H. A. Mohamed, Mater. Sci. Semicond. Process., 29, 238 (2015).
  20. Liang, Y. Shimizu, T. Sasaki, H. Umehara and N. Koshizaki, J. Phys. Chem. B, 108, 9728 (2004).
  21. S. Kar and S. Chaudhuri, J. Phys. Chem. B, 110, 4542 (2006).
  22. H. V. Sheela, V. Madhusudhanan and G. Krishnan, Nanoscale Adv., 1, 1754 (2019).