DOI QR코드

DOI QR Code

Effect of Inactivating Salmonella Typhimurium in Raw Chicken Breast and Pork Loin Using an Atmospheric Pressure Plasma Jet

  • Kim, Hyun-Joo (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University) ;
  • Yong, Hae In (Department of Animal Science and Biotechnology, Chungnam National University) ;
  • Park, Sanghoo (Department of Physics, Korea Advanced Institute of Science and Technology) ;
  • Kim, Kijung (Department of Physics, Korea Advanced Institute of Science and Technology) ;
  • Bae, Young Sik (Department of Animal Science and Biotechnology, Chungnam National University) ;
  • Choe, Wonho (Department of Physics, Korea Advanced Institute of Science and Technology) ;
  • Oh, Mi Hwa (National Institute of Animal Science, RDA) ;
  • Jo, Cheorun (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University)
  • Received : 2013.07.26
  • Accepted : 2013.10.15
  • Published : 2013.12.31

Abstract

The optimal conditions for applications of an atmospheric pressure plasma (APP) jet for the inactivation of Salmonella Typhimurium in chicken breast and pork loins were investigated. APP jet treatment for 10 min (versus 5 minutes) showed a higher inactivation of S. Typhimurium in an agar plate, with the best effect at a distance of 20 mm. A treatment on both sides (both-side treatment) for 2.5 + 2.5 min showed a greater inhibition on S. Typhimurium growth compared to single-side treatment for 5 min, with reduction levels of 0.66 log CFU/g in chicken breast and 1.33 log CFU/g in pork loin, respectively. However, there was no significant difference between single-side treatment for 10 min and both-side treatment for 5 + 5 min in chicken breasts and pork loin samples. In conclusion, APP jet treatment conditions, including distance, time, and direction, may affect the inactivation efficiency of S. Typhimurium. In this experiment, distance of 20 mm and both-side treatment were the best conditions. Therefore, the optimal APP jet treatment conditions were evaluated to maximize its practical efficiency.

Keywords

References

  1. Bardos, L. and Barankova, H. 2009. Plasma processes at atmospheric and low pressures. Vacuum 83:522-527.
  2. Delhalle, L., Saegerman, C., Farnir, F., Korsak, N., Maes, D., Messens, W., De Sadeleer, L., De Zutter, L. and Daube, G. 2009. Salmonella surveillance and control at post-harvest in the Belgian pork meat chain. Food Microbiol. 26:265-271. https://doi.org/10.1016/j.fm.2008.12.009
  3. Deng, X., Shi, J. and Kong, M. G. 2006. Physical mechanisms of inactivation of Bacillus subtilis spores using cold atmospheric plasmas. IEEE T. Plasma Sci. 34:1310-1316. https://doi.org/10.1109/TPS.2006.877739
  4. Dirks, B. P., Dobrynin, D., Fridman, G., Mukhin, Y., Fridman, A., and Quinlan, J. J. 2012. Treatment of raw poultry with nonthermal dielectric barrier discharge plasma to reduce Campylobacter jejuni and Salmonella enterica. J. Food Prot. 75:22-28. https://doi.org/10.4315/0362-028X.JFP-11-153
  5. EFSA (European Food Safety Authority). 2008. A quantitative microbiological risk assessment on Salmonella in meat: source attribution for human salmonellosis from meat. EFSA J. 1:1-32.
  6. EFSA (European Food Safety Authority). 2010. The community summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in the European Union in 2008. EFSA J. 8:1496. https://doi.org/10.2903/j.efsa.2010.1496
  7. Fernandez, A., Noriega, E. and Thompson, A. 2013. Inactivation of Salmonella enterica serovar Typhimurium on fresh produce by cold atmospheric gas plasma technology. Food Microbiol. 33:24-29. https://doi.org/10.1016/j.fm.2012.08.007
  8. Fridovitch, I. 1995. Superoxide radicals and superoxide dismutases. Ann. Rev. Biochem. 64:97-112. https://doi.org/10.1146/annurev.bi.64.070195.000525
  9. Hald, T., Vose, D., Wegener, H. C. and Koupeev, T. 2004. A Bayesian approach to quantify the contribution of animal-food sources to human salmonellosis. Risk Anal. 24:255-269. https://doi.org/10.1111/j.0272-4332.2004.00427.x
  10. Hwang, W. M., Lee, S. M., Hwang, H. S. and Han, J. H. 2004. Survey on the contamination of microorganisms in pork from slaughterhouse in Incheon area. Korean J. Vet Serv. 27:7-15.
  11. ICMSF. 1996. Microorganisms in foods. Characteristics of Microbial Pathogens. Blackie Academic & Professional, London.
  12. Kim, H. J., Ham, J. S., Lee, J. W., Kim, K., Ha, S. D. and Jo, C. 2010. Effects of gamma and electron beam irradiation on the survival of pathogens inoculated into sliced and pizza cheeses. Radiat. Phys. Chem. 79:731-734. https://doi.org/10.1016/j.radphyschem.2009.12.016
  13. Kim, H. J., Yong, H. I., Park, S., Choe, W. and Jo, C. 2013. Effects of dielectric barrier discharge plasma on pathogen inactivation and the physicochemical and sensory characteristics of pork loin. Curr. Appl. Phy. 13:1420-1425. https://doi.org/10.1016/j.cap.2013.04.021
  14. Laroussi, M. 2002. Nonthermal decontamination of biological media by atmospheric-pressure plasmas: review, analysis, and prospects. IEEE Trans. Plasma Sci. 30:1409-1415. https://doi.org/10.1109/TPS.2002.804220
  15. Lee, H. J., Jung, H., Choe, W., Ham, J. S., Lee, J. H. and Jo, C. 2011. Inactivation of Listeria monocytogenes on agar and processed meat surfaces by atmospheric pressure plasma jets. Food Microbiol. 28:1468-1471. https://doi.org/10.1016/j.fm.2011.08.002
  16. Lee, H. J., Jung, S., Jung, H., Park, S., Choe, W., Ham, J. S. and Jo, C. 2012. Evaluation of a dielectric barrier discharge plasma system for inactivating pathogens on cheese slices. J. Anim. Sci. Technol. 54:191-198. https://doi.org/10.5187/JAST.2012.54.3.191
  17. Lee, H. J., Song, H. P., Jung, H., Choe, W., Ham, J. S., Lee, J. H. and Jo, C. 2012. Effect of atmospheric pressure plasma jet on inactivation of Listeria monocytogenes inoculated on egg white and yolk. Korean J. Food Sci. An. 32:561-570. https://doi.org/10.5851/kosfa.2012.32.5.561
  18. Moisan, M., Barbeau, J., Crevier, M. C., Pelletier, J., Phillip, M. and Saoudi, B. 2002. Plasma sterilization. Methods and mechanisms. Pure Appl. Chem. 74:349-358. https://doi.org/10.1351/pac200274030349
  19. Moisan, M., Barbeau, J., Moreau, S., Pelletier, J., Tabrizian, M. and Yahia, L. H. 2001. Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms. Int. J. Pharm. 226:1-21. https://doi.org/10.1016/S0378-5173(01)00752-9
  20. Moreau, M., Orange, N. and Feuilloley, M. G. J. 2008. Nonthermal plasma technologies: New tools for bio-decontamination. Biotechnol. Adv. 26:610-617. https://doi.org/10.1016/j.biotechadv.2008.08.001
  21. Niemira, B. A. 2012. Cold plasma reduction of Salmonella and Escherichia coli O157:H7 on almonds using ambient pressure gases. J. Food Sci. 77:M171-M175. https://doi.org/10.1111/j.1750-3841.2011.02594.x
  22. Niemira, B. A. and Gutsol, A. 2010. Nonthermal plasma as a novel food processing technology. In: Zhang, H. Q., Barbosa- Canovas, G., Balasubramaniam, V. M., Dunne, P., Farkas, D., Yuan, J. editors. Nonthermal processing technologies for food. Ames, IA: Blackwell Publishing. pp. 271-288.
  23. Noriega, E., Shama, G., Laca, A., Díaz, M. and Kong, M. G. 2011. Cold atmospheric gas plasma disinfection of chicken meat and chicken skin contaminated with Listeria innocua. Food Microbiol. 28:1293-1300. https://doi.org/10.1016/j.fm.2011.05.007
  24. Ragni, L., Berardinellia, A., Vannini, L., Montanari, C., Sirri, F., Guerzoni, M. E. and Guarnieri, A. 2010. Non-thermal atmospheric gas plasma device for surface decontamination of shell eggs. J. Food Eng. 100:125-132. https://doi.org/10.1016/j.jfoodeng.2010.03.036
  25. Scharf, W. and Wieszczycka, W. 1999. Electron accelerators for industrial processing - a review. Appl. Accelerators. Res. Ind. 475:949-952.
  26. Song, H. P, Kim, B., Jung, S., Choe, J. H., Yun, H., Kim, Y. J. and Jo, C. 2009. Effect of gamma and electron beam irradiation on the survival of pathogens inoculated into salted, seasoned, and fermented oyster. LWT-Food Sci. Technol. 42:1320-1324. https://doi.org/10.1016/j.lwt.2009.03.018
  27. Yun, H., Kim, B., Jung, S., Kruk, Z. A., Kim, D. B., Choe, W. and Jo, C. 2010. Inactivation of Listeria monocytogenes inoculated on disposable plastic tray, aluminum foil, and paper cup by atmospheric pressure plasma. Food Control 21: 1182-1186. https://doi.org/10.1016/j.foodcont.2010.02.002

Cited by

  1. Generation of In-Package Cold Plasma and Efficacy Assessment Using Methylene Blue vol.35, pp.6, 2015, https://doi.org/10.1007/s11090-015-9638-5
  2. Effect of atmospheric pressure plasma jet on the foodborne pathogens attached to commercial food containers vol.52, pp.12, 2015, https://doi.org/10.1007/s13197-015-2003-0
  3. Microbiological interactions with cold plasma vol.123, pp.2, 2017, https://doi.org/10.1111/jam.13429
  4. Influences of cold atmospheric plasma on microbial safety, physicochemical and sensorial qualities of meat products vol.55, pp.3, 2018, https://doi.org/10.1007/s13197-017-3020-y