Browse > Article
http://dx.doi.org/10.5187/JAST.2013.55.6.545

Effect of Inactivating Salmonella Typhimurium in Raw Chicken Breast and Pork Loin Using an Atmospheric Pressure Plasma Jet  

Kim, Hyun-Joo (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University)
Yong, Hae In (Department of Animal Science and Biotechnology, Chungnam National University)
Park, Sanghoo (Department of Physics, Korea Advanced Institute of Science and Technology)
Kim, Kijung (Department of Physics, Korea Advanced Institute of Science and Technology)
Bae, Young Sik (Department of Animal Science and Biotechnology, Chungnam National University)
Choe, Wonho (Department of Physics, Korea Advanced Institute of Science and Technology)
Oh, Mi Hwa (National Institute of Animal Science, RDA)
Jo, Cheorun (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University)
Publication Information
Journal of Animal Science and Technology / v.55, no.6, 2013 , pp. 545-549 More about this Journal
Abstract
The optimal conditions for applications of an atmospheric pressure plasma (APP) jet for the inactivation of Salmonella Typhimurium in chicken breast and pork loins were investigated. APP jet treatment for 10 min (versus 5 minutes) showed a higher inactivation of S. Typhimurium in an agar plate, with the best effect at a distance of 20 mm. A treatment on both sides (both-side treatment) for 2.5 + 2.5 min showed a greater inhibition on S. Typhimurium growth compared to single-side treatment for 5 min, with reduction levels of 0.66 log CFU/g in chicken breast and 1.33 log CFU/g in pork loin, respectively. However, there was no significant difference between single-side treatment for 10 min and both-side treatment for 5 + 5 min in chicken breasts and pork loin samples. In conclusion, APP jet treatment conditions, including distance, time, and direction, may affect the inactivation efficiency of S. Typhimurium. In this experiment, distance of 20 mm and both-side treatment were the best conditions. Therefore, the optimal APP jet treatment conditions were evaluated to maximize its practical efficiency.
Keywords
Atmospheric pressure plasma jet; Chicken breast; Pork loin; Salmonella Typhimurium; Inactivation;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Bardos, L. and Barankova, H. 2009. Plasma processes at atmospheric and low pressures. Vacuum 83:522-527.
2 Delhalle, L., Saegerman, C., Farnir, F., Korsak, N., Maes, D., Messens, W., De Sadeleer, L., De Zutter, L. and Daube, G. 2009. Salmonella surveillance and control at post-harvest in the Belgian pork meat chain. Food Microbiol. 26:265-271.   DOI   ScienceOn
3 Deng, X., Shi, J. and Kong, M. G. 2006. Physical mechanisms of inactivation of Bacillus subtilis spores using cold atmospheric plasmas. IEEE T. Plasma Sci. 34:1310-1316.   DOI   ScienceOn
4 Dirks, B. P., Dobrynin, D., Fridman, G., Mukhin, Y., Fridman, A., and Quinlan, J. J. 2012. Treatment of raw poultry with nonthermal dielectric barrier discharge plasma to reduce Campylobacter jejuni and Salmonella enterica. J. Food Prot. 75:22-28.   DOI   ScienceOn
5 EFSA (European Food Safety Authority). 2008. A quantitative microbiological risk assessment on Salmonella in meat: source attribution for human salmonellosis from meat. EFSA J. 1:1-32.
6 EFSA (European Food Safety Authority). 2010. The community summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in the European Union in 2008. EFSA J. 8:1496.   DOI
7 Fernandez, A., Noriega, E. and Thompson, A. 2013. Inactivation of Salmonella enterica serovar Typhimurium on fresh produce by cold atmospheric gas plasma technology. Food Microbiol. 33:24-29.   DOI   ScienceOn
8 Fridovitch, I. 1995. Superoxide radicals and superoxide dismutases. Ann. Rev. Biochem. 64:97-112.   DOI   ScienceOn
9 Hald, T., Vose, D., Wegener, H. C. and Koupeev, T. 2004. A Bayesian approach to quantify the contribution of animal-food sources to human salmonellosis. Risk Anal. 24:255-269.   DOI   ScienceOn
10 Hwang, W. M., Lee, S. M., Hwang, H. S. and Han, J. H. 2004. Survey on the contamination of microorganisms in pork from slaughterhouse in Incheon area. Korean J. Vet Serv. 27:7-15.   과학기술학회마을
11 ICMSF. 1996. Microorganisms in foods. Characteristics of Microbial Pathogens. Blackie Academic & Professional, London.
12 Kim, H. J., Ham, J. S., Lee, J. W., Kim, K., Ha, S. D. and Jo, C. 2010. Effects of gamma and electron beam irradiation on the survival of pathogens inoculated into sliced and pizza cheeses. Radiat. Phys. Chem. 79:731-734.   DOI   ScienceOn
13 Kim, H. J., Yong, H. I., Park, S., Choe, W. and Jo, C. 2013. Effects of dielectric barrier discharge plasma on pathogen inactivation and the physicochemical and sensory characteristics of pork loin. Curr. Appl. Phy. 13:1420-1425.   DOI   ScienceOn
14 Laroussi, M. 2002. Nonthermal decontamination of biological media by atmospheric-pressure plasmas: review, analysis, and prospects. IEEE Trans. Plasma Sci. 30:1409-1415.   DOI   ScienceOn
15 Moisan, M., Barbeau, J., Crevier, M. C., Pelletier, J., Phillip, M. and Saoudi, B. 2002. Plasma sterilization. Methods and mechanisms. Pure Appl. Chem. 74:349-358.   DOI   ScienceOn
16 Lee, H. J., Jung, H., Choe, W., Ham, J. S., Lee, J. H. and Jo, C. 2011. Inactivation of Listeria monocytogenes on agar and processed meat surfaces by atmospheric pressure plasma jets. Food Microbiol. 28:1468-1471.   DOI   ScienceOn
17 Lee, H. J., Jung, S., Jung, H., Park, S., Choe, W., Ham, J. S. and Jo, C. 2012. Evaluation of a dielectric barrier discharge plasma system for inactivating pathogens on cheese slices. J. Anim. Sci. Technol. 54:191-198.   DOI   ScienceOn
18 Lee, H. J., Song, H. P., Jung, H., Choe, W., Ham, J. S., Lee, J. H. and Jo, C. 2012. Effect of atmospheric pressure plasma jet on inactivation of Listeria monocytogenes inoculated on egg white and yolk. Korean J. Food Sci. An. 32:561-570.   DOI   ScienceOn
19 Moisan, M., Barbeau, J., Moreau, S., Pelletier, J., Tabrizian, M. and Yahia, L. H. 2001. Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms. Int. J. Pharm. 226:1-21.   DOI   ScienceOn
20 Moreau, M., Orange, N. and Feuilloley, M. G. J. 2008. Nonthermal plasma technologies: New tools for bio-decontamination. Biotechnol. Adv. 26:610-617.   DOI   ScienceOn
21 Niemira, B. A. 2012. Cold plasma reduction of Salmonella and Escherichia coli O157:H7 on almonds using ambient pressure gases. J. Food Sci. 77:M171-M175.   DOI   ScienceOn
22 Niemira, B. A. and Gutsol, A. 2010. Nonthermal plasma as a novel food processing technology. In: Zhang, H. Q., Barbosa- Canovas, G., Balasubramaniam, V. M., Dunne, P., Farkas, D., Yuan, J. editors. Nonthermal processing technologies for food. Ames, IA: Blackwell Publishing. pp. 271-288.
23 Song, H. P, Kim, B., Jung, S., Choe, J. H., Yun, H., Kim, Y. J. and Jo, C. 2009. Effect of gamma and electron beam irradiation on the survival of pathogens inoculated into salted, seasoned, and fermented oyster. LWT-Food Sci. Technol. 42:1320-1324.   DOI   ScienceOn
24 Noriega, E., Shama, G., Laca, A., Díaz, M. and Kong, M. G. 2011. Cold atmospheric gas plasma disinfection of chicken meat and chicken skin contaminated with Listeria innocua. Food Microbiol. 28:1293-1300.   DOI   ScienceOn
25 Ragni, L., Berardinellia, A., Vannini, L., Montanari, C., Sirri, F., Guerzoni, M. E. and Guarnieri, A. 2010. Non-thermal atmospheric gas plasma device for surface decontamination of shell eggs. J. Food Eng. 100:125-132.   DOI   ScienceOn
26 Scharf, W. and Wieszczycka, W. 1999. Electron accelerators for industrial processing - a review. Appl. Accelerators. Res. Ind. 475:949-952.
27 Yun, H., Kim, B., Jung, S., Kruk, Z. A., Kim, D. B., Choe, W. and Jo, C. 2010. Inactivation of Listeria monocytogenes inoculated on disposable plastic tray, aluminum foil, and paper cup by atmospheric pressure plasma. Food Control 21: 1182-1186.   DOI   ScienceOn