• Title/Summary/Keyword: Atmospheric aerosols

Search Result 380, Processing Time 0.024 seconds

Monitoring of Climate Change of Northeast Asia and Background Atmosphere in Korea

  • Oh, Sung-Nam;Chung, Hyo-Sang;Choi, Jae-Cheon;Bang, So-Young;Hyun, Myung-Suk
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.232-235
    • /
    • 2003
  • In general, the parameters of climate change include aerosol chemical compounds, aerosol optical depth, greenhouse gases(carbon dioxide, CFCs, methane, nitrous oxide, tropospheric ozone), ozone distribution, precipitation acidity and chemical compounds, persistent organic pollutants and heavy metals, radioactivity, solar radiation including ultra-violet and standard meteorological parameters. Over the last ten years, the monitoring activities of Korea regarding to the climate change have been progressed within the WMO GAW and ACE-Asia IOP programs centered at the observation sites of Anmyeon and Jeju Gosan islands respectively. The Greenhouse gases were pointed out that standard air quality monitoring techniques are required to enhance data comparability and that data presentation formats need to be harmonized and easily understood. Especially, the impact of atmospheric aerosols on climate depends on their optical properties, which, in turn, are a function of aerosol size distribution and the spectral reflective indices. Aerosol optical depth and single scattering albedo in the visible are used as the two basic parameters in the atmospheric temperature variation studies. The former parameter is an indicator of the attenuation power of aerosols, while the latter represents the relative strength of scattering and absorption by aerosols. For aerosols with weak absorption, surface temperature decreases as the optical depth increases because of the domination of backscattering. For aerosols with strong absorption, however, warming could occur as the optical depth increases. The objective of the study is to characterize the means, variability, and trends of Greenhouse gases and aerosol properties on a regional basis using data from its baseline observatories in Korea peninsula. A further goal is to understand the factors that control radiative forcing of the greenhouse and aerosol.

  • PDF

3-D Perspectives of Atmospheric Aerosol Optical Properties over Northeast Asia Using LIDAR on-board the CALIPSO satellite (CALIPSO위성 탑재 라이다를 이용한 동북아시아 지역의 대기 에어러솔 3차원 광학특성 분포)

  • Lee, Kwon-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.5
    • /
    • pp.559-570
    • /
    • 2014
  • Backscatter signal observed from the space-borne Light Detection And Ranging (LIDAR) system is providing unique 3-dimensional spatial distribution as well as temporal variations for atmospheric aerosols. In this study, the continuous observations for aerosol profiles were analyzed during a years of 2012 by using a Cloud-Aerosol LIDAR with Orthogonal Polarization (CALIOP), carried on the Cloud-Aerosol LIDAR and Infrared Pathfinder Satellite Observation (CALIPSO) satellite. The statistical analysis on the particulate extinction coefficient and depolarization ratio for each altitude was conducted according to time and space in order to estimate the variation of optical properties of aerosols over Northeast Asia ($E110^{\circ}-140^{\circ}$, $N20^{\circ}$ $-50^{\circ}$). The most frequent altitudes of aerosols are clearly identified and seasonal mean aerosol profiles vary with season. Since relatively high particle depolarization ratios (>0.5) are found during all seasons, it is considered that the non-spherical aerosols mixed with pollution are mainly exists over study area. This study forms initial regional 3-dimensional aerosol information, which will be extended and improved over time for estimation of aerosol climatology and event cases.

A Review of Clouds and Aerosols (구름과 에어로졸 고찰)

  • Yum, Seong Soo;Kim, Byung Gon;Kim, Sang Woo;Chang, Lim Seok;Kim, Seong Bum
    • Journal of Climate Change Research
    • /
    • v.2 no.4
    • /
    • pp.253-267
    • /
    • 2011
  • This study summarizes some important results from the studies on clouds and aerosols, and their effects on climate in the northeast Asia that were made mainly by Korean scientists and some other scientists from around the world. Clouds and aerosols are recognized as one of the most important factors that contributes to uncertainties in climate predictions and therefore become the subject of active research in the western developed countries in recent years. However, the researches on clouds and aerosols are very weakly done in Korea except ground based measurements of aerosol physical, chemical and optical properties. These measurements indicate that aerosol loadings in the northeast Asia are generally much higher than other parts of the world. On the other hand, researches on clouds are few in Korea. Satellite and ground remote sensing, numerical modeling and aircraft in-situ measurements of clouds are highly needed for better assessment of the role of clouds on climate in the northeast Asia.

Acidification and neutralization characteristics of size-fractionated atmospheric aerosols at Gosan site of Jeju Isalnd (제주도 고산지역 대기 에어로졸의 입경별 산성화-중화 특성)

  • Kim, Won-Hyung;Song, Jung-Min;Kim, Hyeon-A;Kang, Chang-Hee;Kim, In-Whan
    • Analytical Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.47-57
    • /
    • 2015
  • The size fractionated atmospheric aerosols have been collected at Gosan site of Jeju Island during 2010~2011, and then their characteristics of acidification and neutralization have been investigated. The anthropogenic $NH_4{^+}$ and nss-$SO_4{^{2-}}$ showed high concentrations mostly at ultra-fine particle mode of $0.7{\sim}1.1{\mu}m$, but they also had a bimodal distribution showing high concentrations at coarse particle mode of $4.7{\sim}5.8{\mu}m$ during Asian Dust periods. The concentrations of nss-$Ca^{2+}$ and $NO_3{^-}$ were relatively high at coarse particle mode of $3.3{\sim}4.7{\mu}m$, especially $NO_3{^-}$ showed high concentrations with a bimodal pattern at both fine and coarse particle modes. The acidification of atmospheric aerosols at Gosan area was contributed mostly by inorganic sulfuric and nitric acids, while the contribution by organic formic and acetic acids was only 1.6~6.4%. Furthermore, the neutralization of acidic species among atmospheric aerosols was performed mostly by $NH_3$, $CaCO_3$ and $MgCO_3$, especially the neutralization by $NH_3$ was high in fine particle mode, while that by $CaCO_3$ was relatively high in coarse particle mode.

Exploiting GOCI-II UV Channel to Observe Absorbing Aerosols (GOCI-II 자외선 채널을 활용한 흡수성 에어로졸 관측)

  • Lee, Seoyoung;Kim, Jhoon;Ahn, Jae-Hyun;Lim, Hyunkwang;Cho, Yeseul
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1697-1707
    • /
    • 2021
  • On 19 February 2020, the 2nd Geostationary Ocean Color Imager (GOCI-II), a maritime sensor of GEO-KOMPSAT-2B, was launched. The GOCI-II instrument expands the scope of aerosol retrieval research with its improved performance compared to the former instrument (GOCI). In particular, the newly included UV band at 380 nm plays a significant role in improving the sensitivity of GOCI-II observations to the absorbing aerosols. In this study, we calculated the aerosol index and detected absorbing aerosols from January to June 2021 using GOCI-II 380 and 412 nm channels. Compared to the TROPOMI aerosol index, the GOCI-II aerosol index showed a positive bias, but the dust pixels still could be clearly distinguished from the cloud and clear pixels. The high GOCI-II aerosol index coincided with ground-based observations indicating dust aerosols were detected. We found that 70.5% of dust and 80% of moderately-absorbing fine aerosols detected from the ground had GOCI-II aerosol indices larger than the 75th percentile through the whole study period.