Browse > Article
http://dx.doi.org/10.7780/kjrs.2021.37.6.1.17

Exploiting GOCI-II UV Channel to Observe Absorbing Aerosols  

Lee, Seoyoung (Department of Atmospheric Sciences, Yonsei University)
Kim, Jhoon (Department of Atmospheric Sciences, Yonsei University)
Ahn, Jae-Hyun (Korea Institute of Ocean Science and Technology)
Lim, Hyunkwang (Department of Atmospheric Sciences, Yonsei University)
Cho, Yeseul (Department of Atmospheric Sciences, Yonsei University)
Publication Information
Korean Journal of Remote Sensing / v.37, no.6_1, 2021 , pp. 1697-1707 More about this Journal
Abstract
On 19 February 2020, the 2nd Geostationary Ocean Color Imager (GOCI-II), a maritime sensor of GEO-KOMPSAT-2B, was launched. The GOCI-II instrument expands the scope of aerosol retrieval research with its improved performance compared to the former instrument (GOCI). In particular, the newly included UV band at 380 nm plays a significant role in improving the sensitivity of GOCI-II observations to the absorbing aerosols. In this study, we calculated the aerosol index and detected absorbing aerosols from January to June 2021 using GOCI-II 380 and 412 nm channels. Compared to the TROPOMI aerosol index, the GOCI-II aerosol index showed a positive bias, but the dust pixels still could be clearly distinguished from the cloud and clear pixels. The high GOCI-II aerosol index coincided with ground-based observations indicating dust aerosols were detected. We found that 70.5% of dust and 80% of moderately-absorbing fine aerosols detected from the ground had GOCI-II aerosol indices larger than the 75th percentile through the whole study period.
Keywords
GOCI-II; UV; aerosol index; absorbing aerosol;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Kleipool, Q.L., M.R. Dobber, J.F. de Haan, and P.F. Levelt, 2008. Earth surface reflectance climatology from 3 years of OMI data, Journal of Geophysical Research, 113: D1830.
2 Park, S., J. Lee, J. Im, C.-K. Song, M. Choi, J. Kim, S. Lee, R. Park, S.-M. Kim, J. Yoon, D.-W. Lee, and L.J. Quackenbush, 2020. Estimation of spatially continuous daytime particulate matter concentrations under all sky conditions through the synergistic use of satellite-based AOD and numerical models, Science of the Total Environment, 713: 136516.   DOI
3 Ahn, Y.-H., J.-H. Ryu, S. Cho, and S.-H. Kim, 2010. Missions and User Requirements of the 2nd Geostationary Ocean Color Imager (GOCI-II), Korean Journal of Remote Sensing, 26(2): 277-285 (in Korean with English abstract).   DOI
4 Choi, M., J. Kim, J. Lee, M. Kim, Y.-J. Park, U. Jeong, W. Kim, H. Hong, B. N. Holben, T.F. Eck, C. H. Song, J.-H. Lim, and C.-K. Song, 2016. GOCI Yonsei Aerosol Retrieval (YAER) algorithm and validation during the DRAGON-NE Asia 2012 campaign, Atmospheric Measurement Techniques, 9(3): 1377-1398.   DOI
5 Holben, B.N., T.F. Eck, I. Slutsker, D. Tanre, J.P. Buis, A. Setzer, E. Vermote, J.A. Reagan, Y.J. Kaufman, and T. Nakajima, 1998. AERONET-A federated instrument network and data archive for aerosol characterization, Remote sensing of environment, 66(1): 1-16.   DOI
6 Choi, M., J. Kim, J. Lee, M. Kim, Y. Park, B. Holben, F. Thomas, Z. Li, and C.H. Song, 2018. GOCI Yonsei aerosol retrieval version 2 aerosol products: improved algorithm description and error analysis with uncertainty estimation from 5-year validation over East Asia, Atmospheric Measurement Techniques, 11: 385-408.   DOI
7 Ciren, P. and S. Kondragunta, 2014. Dust aerosol index (DAI) algorithm for MODIS, Journal of Geophysical Research: Atmospheres, 119: 4770-4792.   DOI
8 Herman, J.R., P.K. Bhartia, O. Torres, C. Hsu, C. Seftor, and E. Celarier, 1997. Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data, Journal of Geophysical Research, 102 (D14): 16911-16922.   DOI
9 Jeon, W., Y. Choi, P. Percell, A. Hossein Souri, C.-K. Song, S.-T. Kim, and J. Kim, 2016. Computationally efficient air quality forecasting tool: Implementation of STOPS v1.5 model into CMAQ v5.0.2 for a prediction of Asian dust, Geoscientific Model Development, 9: 3671-3684.   DOI
10 Kim, M., J. Kim, O. Torres, C. Ahn, W. Kim, U. Jeong, S. Go, X. Liu, K. J. Moon, D.-R. Kim, 2018. Optimal Estimation-Based Algorithm to Retrieve Aerosol Optical Properties for GEMS Measurements over Asia, Remote Sensing, 10: 162.   DOI
11 Hsu, N.C., S.-C. Tsay, M.D. King, and J.R. Herman, 2006. Deep Blue retrievals of Asian aerosol properties during ACE-Asia, IEEE Transactions on Geoscience and Remote Sensing, 44(11): 3180-3195.   DOI
12 De Graaf, M., P. Stammes, O. Torres, and R.B.A. Koelemeijer, 2005. Absorbing Aerosol Index: Sensitivity analysis, application to GOME and comparison to TOMS, Journal of Geophysical Research, 110: D01201.   DOI
13 Lee, J., J. Kim, C.H. Song, J.-H. Ryu, Y.-H. Ahn, and C. Song, 2010a. Algorithm for retrieval of aerosol optical properties over the ocean from the Geostationary Ocean Color Imager, Remote Sensing of Environment, 114(5): 1077-1088.   DOI
14 Lee, J., J. Kim, C.H. Song, S.B. Kim, Y. Chun, B.J. Sohn, and B.N. Holben, 2010b. Characteristics of aerosol types from AERONET sunphotometer measurements, Atmospheric Environment, 44: 3110-3117.   DOI
15 Lee, J., J. Kim, P. Yang, and N.C. Hsu, 2012. Improvement of aerosol optical depth retrieval from MODIS spectral reflectance over the global ocean using new aerosol models archived from AERONET inversion data and tri-axial ellipsoidal dust database, Atmospheric Chemistry and Physics, 12(15): 7087-7102.   DOI
16 Lee, S., J. Kim, M. Choi, J. Hong, H. Lim, T.F. Eck, B.N. Holben, J.-Y. Ahn, J. Kim, and J.-H. Koo, 2019. Analysis of long-range transboundary transport (LRTT) effect on Korean aerosol pollution during the KORUS-AQ campaign, Atmospheric Environment, 204: 53-67.   DOI
17 Lee, S., M. Kim, S.-Y. Kim, D.-W. Lee, H. Lee, J. Kim, S. Le, and Y. Liu, 2021. Assessment of long-range transboundary aerosols in Seoul, South Korea from Geostationary Ocean Color Imager (GOCI) and ground-based observations, Environmental Pollution, 269: 115924.   DOI
18 Ahn, J.-H., K. Kim, E. Lee, S.-J. Bae, K.-S. Lee, J.-E. Moon, T.-H. Han, and Y.-J. Park, 2021. Introduction of GOCI-II Atmospheric Correction Algorithm and Its Initial Validations, Korean Journal of Remote Sensing, 37(5-2): 1259-1268 (in Korean with English abstract).   DOI
19 Choi, M., H. Lim, J. Kim, S. Lee, T.F. Eck, B.N. Holben, M.J. Garay, E.J. Hyer, and P.E. Saide. 2019. Validation, comparison, and integration of GOCI, AHI, MODIS, MISR, and VIIRS aerosol optical depth over East Asia during the 2016 KORUS-AQ campaign, Atmospheric Measurement Techniques, 12(8): 4619-4641.   DOI
20 Goto, D., M. Kikuchi, K. Suzuki, M. Hayasaki, M. Yoshida, T. M. Nagao, M. Choi, J. Kim, N. Sugimoto, A. Shimizu, E. Oikawa, and T. Nakajima, 2019. Aerosol model evaluation using two geostationary satellites over East Asia in May 2016, Atmospheric Research, 217: 93-113.   DOI
21 Penning de Vries, M.J.M., S. Beirle, C. Hormann, J.W. Kaiser, P. Stammes, L.G. Tilstra, O.N.E. Tuinder, and T. Wagner, 2015. A global aerosol classification algorithm incorporating multiple satellite data sets of aerosol and trace gas abundances, Atmospheric Chemistry and Physics, 15: 10597-10618.   DOI
22 Lee, S.-J., K.-S. Lee, T.-H. Han, J.-E. Moon, S.-J. Bae, and J.-K. Choi, 2021c. Introduction on the products and the quality management plans for GOCI-II, Korean Journal of Remote Sensing, 37(5-2): 1245-1257 (in Korean with English abstract).   DOI
23 Mukai, S., I. Sano, and M. Nakata, 2019. Algorithms for the classification and characterization of aerosols: utility verification of near-UV satellite observations, Journal of Applied Remote Sensing, 13(1): 014527.
24 Mukai, S., I. Sano, and M. Nakata, 2021. Improved Algorithms for Remote Sensing-Based Aerosol Retrieval during Extreme Biomass Burning Events, Atmosphere, 12: 403.   DOI
25 Jung, J., A.H. Souri, D.C. Wong, S. Lee, W. Jeon, J. Kim, and Y. Choi, 2019. The Impact of the Direct Effect of Aerosols on Meteorology and Air Quality Using Aerosol Optical Depth Assimilation During the KORUS-AQ Campaign, Journal of Geophysical Research: Atmospheres, 124: 8303-8319.   DOI
26 Lambert, J.-C., S. Compernolle, K.-U. Eichmann, M. de Graaf, D. Hubert, A. Keppens, Q. Kleipool, B. Langerock, M.K. Sha, T. Verhoelst, T. Wagner, C. Ahn, A. Argyrouli, D. Balis, K.L. Chan, I. De Smedt, H. Eskes, A.M. Fjaeraa, K. Garane, J.F. Gleason, F. Goutail, J. Granville, P. Hedelt, K.-P. Heue, G. Jaross, ML. Koukouli, J. Landgraf, R. Lutz, S. Nanda, S. Niemeijer, A. Pazmino, G. Pinardi, J.-P. Pommereau, A. Richter, N. Rozemeijer, M. Sneep, D. Stein Zweers, N. Theys, G. Tilstra, O. Torres, P. Valks, J. van Geffen, C. Vigouroux, P. Wang, and M. Weber, 2021. Quarterly Validation Report of the Copernicus Sentinel-5 Precursor Operational Data Products #13: April 2018 - December 2021. S5P MPC Routine Operations Consolidated Validation Report Series, Issue #13, Version 13.01.00, p. 189, https://mpc-vdaf.tropomi.eu/ProjectDir/reports//pdf/S5P-MPC-IASB-ROCVR-13.00.10-20211217_signed.pdf, Accessed on Dec. 24, 2021.
27 Kim, J., J. Lee, H.C. Lee, A. Higurashi, T. Takemura, and C.H. Song, 2007. Consistency of the aerosol type classification from satellite remote sensing during the Atmospheric Brown Cloud-East Asia Regional Experiment campaign, Journal of Geophysical Research, 112: D22S33.   DOI
28 Xu, J.-W., R.V. Martin, A. Van Donkelaar, J. Kim, M. Choi, Q. Zhang, G. Geng, Y. Liu, Z. Ma, L. Huang, Y. Wang, H. Chen, H. Che, P. Lin, and N. Lin, 2015. Estimating ground-level PM2.5 in eastern China using aerosol optical depth determined from the GOCI satellite instrument, Atmospheric Chemistry and Physics, 15: 13133-13144.   DOI
29 Yang, Y., H. Wang, S.J. Smith, P.-L. Ma, and P.J. Rasch, 2017. Source attribution of black carbon and its direct radiative forcing in China, Atmospheric Chemistry and Physics, 17: 4319-4336.   DOI
30 Penning de Vries, M.J.M., S. Beirle, and T. Wagner, 2009. UV Aerosol Indices from SCIAMACHY: introducing the SCattering Index (SCI), Atmospheric Chemistry and Physics, 9: 9555-9567.   DOI
31 Sinyuk, A., B.N. Holben, T.F. Eck, D.M. Giles, I. Slutsker, S. Korkin, J.S. Schafer, A. Smirnov, M. Sorokin, and A. Lyapustin, 2020. The AERONET Version 3 aerosol retrieval algorithm, associated uncertainties and comparisons to Version 2, Atmospheric Measurement Techniques, 13: 3375-3411.   DOI
32 Stein Zweers, D.C., 2021. TROPOMI ATBD of the UV aerosol index, S5P-KNMI-L2-0008-RP, https://sentinel.esa.int/web/sentinel/user-guides/documentlibrary, Accessed on Oct. 12, 2021.
33 Torres, O., P.K. Bhartia, J.R. Herman, and Z. Ahmad, 1998. Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation: Theoretical basis, Journal of Geophysical Research, 103: 17099-17110.   DOI
34 Spurr, R.J.D., 2006. VLIDORT: A linearized pseudo-spherical vector discrete ordinate radiative transfer code for forward model and retrieval studies in multilayer multiple scattering media, Journal of Quantitative Spectroscopy and Radiative Transfer, 102(2): 316-342.   DOI
35 Park, S., M. Shin, J. Im, C.-K. Song, M. Choi, J. Kim, S. Lee, R. Park, J. Kim, D.-W. Lee and S.-K. Kim, 2019. Estimation of ground-level particulate matter concentrations through the synergistic use of satellite observations and process-based models over South Korea, Atmospheric Chemistry and Physics, 19: 1097-1113.   DOI
36 Tilstra, L.G., 2008. SCIAMACHY Absorbing Aerosol Index Algorithm Theoretical Basis Document, Koninklijk Nederlands Meteorologisch Instituut, De Bilt, NED.
37 Torres, O., A. Tanskanen, B. Veihelmann, C. Ahn, R. Braak, P.K. Bhartia, P. Veefkind, and P. Levelt, 2007. Aerosols and surface UV products from Ozone Monitoring Instrument observations: An overview, Journal of Geophysical Research, 112: D24S47.   DOI