• Title/Summary/Keyword: Atmospheric aerosols

Search Result 380, Processing Time 0.023 seconds

An Analysis of Aerosol Mass Concentrations and Elemental Constituents Measured at Cheongwon depending on the Backward Trajectories of Air Parcel in East Asia in 2011 (2011년 동아시아에서 기류의 이동 경로에 따른 청원에서 측정한 에어로졸 질량 농도 및 원소 성분 분석)

  • Kim, Hak-Sung;Byun, Kwang-Tae;Chung, Yong-Seung;Choi, Hyun-Jung;Kim, Min-Jung
    • Journal of Environmental Science International
    • /
    • v.21 no.7
    • /
    • pp.855-863
    • /
    • 2012
  • This study analyzed mass concentrations of TSP, PM10 and PM2.5 and elemental constituents according to the isentropic backward trajectories of air parcel from Cheongwonin East Asia during the period January - October, 2011. Mass concentrations of the continental polluted airflow (CP) showed levels of TSP and PM10 mass concentrations higher than the continental background airflow (CB). Also, PM2.5 mass concentrations of anthropogenic fine particles ran higher in CP than in CB. The elemental constituents and elemental constituent ratio ended up varying depending on the origin of atmospheric aerosols generated. The average absolute content of elemental constituents reached its height in CB, the ratio of anthropogenically originating elements (PE) among the all elements (AE) analyzed marked a high in CP, and Mg+Na/AE reached its height in the oceanic airflow (OA). At the same time, TSP, PM10 and PM2.5 mass concentrations, the ratio of PM2.5/TSP and PE/AE element ratio ran higher in CP than CB. Episodes of large-scale transport of atmospheric pollutants as observed at Cheongwon were 8 cases and 22 days. The ratios of PM10, PM2.5 among TSP mass concentrations showed different results and the ratios of PM2.5 showed an increasing trend in the episodes of anthropogenic air pollution transport. Overall, dustfall episodes show a level of elemental constituents higher than those of anthropogenic air pollution.Dustfall episodes were observed to contain more of Fe, Al and Ca originating from continental soils and those of air pollution were observed to contain more of Zn, Mn, Cu and Pb. By difference in contents of absolute elemental constituents, episodes of anthropogenic air pollution showed a high PE/AE rate, and dustfall episodes a high SE/AE rate.

Chemical Characteristics and Formation Pathways of Humic Like Substances (HULIS) in PM2.5 in an Urban Area (도시지역 PM2.5의 HULIS 화학 특성 및 발생 과정 조사)

  • Son, Se-Chang;Bae, Min-Suk;Park, Seung-Shik
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.3
    • /
    • pp.239-254
    • /
    • 2015
  • Little information on HUmic-Like Substances (HULIS) in ambient particulate matter has been reported yet in Korea. HULIS makes up a significant fraction of the water-soluble organic mass in the atmospheric aerosols and influence their water uptake properties. In this study 24-hr $PM_{2.5}$ samples were collected between December 2013 and October 2014 at an urban site in Gwangju and analyzed for organic carbon (OC), elemental carbon (EC), water-soluble OC (WSOC), HULIS, and ionic species, to investigate possible sources and formation processes of HULIS. HULIS was separated using solid phase extraction method and quantified by total organic carbon analyzer. During the study period, HULIS concentration ranged from 0.19 to $5.65{\mu}gC/m^3$ with an average of $1.83{\pm}1.22{\mu}gC/m^3$, accounting for on average 45% of the WSOC (12~ 73%), with higher in cold season than in warm season. Strong correlation of WSOC with HULIS ($R^2=0.91$) indicates their similar chemical characteristics. On the basis of the relationships between HULIS and a variety of chemical species (EC, $K^+$, $NO_3{^-}$, $SO_4{^{2-}}$, and oxalate), it was postulated that HULIS observed during summer and winter were likely attributed to secondary formation and primary emissions from biomass burning (BB) and traffics. Stronger correlation of HULIS with $K^+$, which is a BB tracer, in winter ($R^2=0.81$) than in summer ($R^2=0.66$), suggests more significant contribution of BB emissions in winter to the observed HULIS. It is interesting to note that BB emissions may also have an influence on the HULIS in summer, but further study using levoglucosan that is a unique organic marker of BB emissions is required during summer. Higher correlation between HULIS and oxalate, which is mainly formed through cloud processing and/or photochemical oxidation processes, was found in the summer ($R^2=0.76$) than in the winter ($R^2=0.63$), reflecting a high fraction of secondary organic aerosol in the summer.

Observation of Secondary Organic Aerosol and New Particle Formation at a Remote Site in Baengnyeong Island, Korea

  • Choi, Jinsoo;Choi, Yongjoo;Ahn, Junyoung;Park, Jinsoo;Oh, Jun;Lee, Gangwoong;Park, Taehyun;Park, Gyutae;Owen, Jeffrey S.;Lee, Taehyoung
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.4
    • /
    • pp.300-312
    • /
    • 2017
  • To improve the understanding of secondary organic aerosol (SOA) formation from the photo-oxidation of anthropogenic and biogenic precursors at the regional background station on Baengnyeong Island, Korea, gas phase and aerosol chemistries were investigated using the Proton Transfer Reaction Time of Flight Mass Spectrometer (PTR-ToF-MS) and the Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS), respectively. HR-ToF-AMS measured fine particles ($PM_1$; diameter of particle matter less than $1{\mu}m$) at a 6-minute time resolution from February to November 2012, while PTR-ToF-MS was deployed during an intensive period from September 21 to 29, 2012. The one-minute time-resolution and high mass resolution (up to $4000m{\Delta}m^{-1}$) data from the PTR-ToF-MS provided the basis for calculations of the concentrations of anthropogenic and biogenic volatile organic compounds (BVOCs) including oxygenated VOCs (OVOCs). The dominant BVOCs from the site are isoprene (0.23 ppb), dimethyl sulphide (DMS, 0.20 ppb), and monoterpenes (0.38 ppb). Toluene (0.45 ppb) and benzene (0.32 ppb) accounted for the majority of anthropogenic VOCs (AVOCs). OVOCs including acetone (3.98 ppb), acetaldehyde (2.67 ppb), acetic acid (1.68 ppb), and formic acid (2.24 ppb) were measured. The OVOCs comprise approximately 75% of total measured VOCs, suggesting the occurrence of strong oxidation processes and/or long-range transported at the site. A strong photochemical aging and oxidation of the atmospheric pollutants were also observed in aerosol measured by HR-ToF-AMS, whereby a high $f_{44}:f_{43}$ value is shown for organic aerosols (OAs); however, relatively low $f_{44}:f_{43}$ values were observed when high concentrations of BVOCs and AVOCs were available, providing evidence of the formation of SOA from VOC precursors at the site. Overall, the results of this study revealed several different SOA formation mechanisms, and new particle formation and particle growth events were identified using the powerful tools scanning mobility particle sizer (SMPS), PTR-ToF-MS, and HR-ToF-AMS.

Characteristics of PM Chemical Component during Haze Episode and Asian Dust at Gwang-ju (광주지역 고농도 및 황사 시의 미세먼지 화학적 성분 특성)

  • Lee, Yeong-Jae;Jung, Sun-A;Jo, Mi-Ra;Kim, Sun-Jung;Park, Mi-Kyung;Ahn, Joon-Young;Lyu, Young-Sook;Choi, Won-Jun;Hong, You-Deog;Han, Jin-Seok;Lim, Jae-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.5
    • /
    • pp.434-448
    • /
    • 2014
  • The aerosol characteristics between haze episode and Asian dust event were identified in January and March, 2013 in Gwang-ju of Korea to investigate the metal elements, ionic concentrations and carbonaceous particles of $PM_{2.5}$ and $PM_{10}$. In the haze episode, the concentrations were increased 1~3.2 times of ionic species and 1.6~2.7 of metal elements. Especially, the concentration of $NO{_3}{^-}$, $SO{_4}{^2-}$ and $NH{_4}{^+}$ consists of 50 percent in ionic species during haze episode that was higher than Asian dust event. This suggests that secondary aerosols from anthropogenic air pollution were mainly contributed by haze episode. During the Asian dust event, increase of metal concentrations was higher than haze episode because of remarkable increase of Ti, K and Fe originated from soil. The concentrations of carbonaceous particles were increased 2.5 times during haze episode, and 2.4 times of OC and 2.1 times of EC during Asian dust event in $PM_{2.5}$. However, these aerosol mass concentration does not affect the OC/EC ratio. The average equivalence ratios of cations/anions in $PM_{2.5}$ were 0.99 in haze episodes and 0.94 during non-event day. The neutralization factor of $NH_3$ was higher than that of $CaCO_3$. Futhermore, $NH{_4}{^+}$ aerosol was aged due to atmospheric stagnation that might be affected by the haze episode.

The Present Status and Development Plan in the Field of Climate Change Science in Korea analyzed by the IPCC-IV Reports (IPCC-IV 국가 보고서 분석에 의한 한국의 기후변화과학 분야의 현황과 발전방향)

  • Chung, Yun-Ang;Chung, Hyo-Sang;Ryu, Chan-Su
    • Journal of Integrative Natural Science
    • /
    • v.4 no.1
    • /
    • pp.38-43
    • /
    • 2011
  • The recent global warming may be estimated to give lots of impacts to the human society and biosphere of influencing climate change included by the natural climate variations through the human activity which can directly and/or indirectly play a major role of total atmospheric composition overall. Therefore it currently appears evidences such as hot wave, typhoon, and biosphere disturbance, etc. over the several regions to be influenced by global warming due to increasing the concentration of greenhouse gases in the atmosphere through inducing forest destruction, fossil fuel combustion, greenhouse gases emission, etc. since industrial revolution era. Through the working group report of IPCC (Intergovernmental Panel on Climate Change) for climate change was analyzed by the individual country's current status and figure out the important issues and problems related to the future trend of climate change science with advanced countries preparedness and research, In this study, the first working group report of IPCC focuses on those aspects of the current understanding of the physical science of climate change that are judged to be most relevant to policymakers. As this report was assessed and analyzed by including the progress of climate change science, the role of climate models and evolution in the treatment of uncertainties. This consists of the changes in atmospheric constituents(both aerosols and gases) that affect the radiative energy balance in the atmosphere and determine the Earth's climate, considering the interaction between biogeochemical cycles that affect atmospheric constituents and climate change, including aerosol/cloud interactions, the extensive range of observations snow available for the atmosphere and surface, for snow, ice, and frozen ground and for the oceans, respectively and changes in sea level, the paleoclimate perspective and assessment of evidence for past climate change and the extension, the ways in which physical processes are simulated in climate models and the evaluation of models against observed climate, the development plans and methods of improving expert and building manpower urgently and R&D fund expansion in detail for climate change science in Korea will be proposed.

Estimation of Gas-particle partitioning Coefficients (Kp) of Carcinogenic polycyclic Aromatic hydrocarbons in Carbonaceous Aerosols Collected at Chiang - Mai, Bangkok and hat-Yai, Thailand

  • Pongpiachan, Siwatt;Ho, Kin Fai;Cao, Junji
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.4
    • /
    • pp.2461-2476
    • /
    • 2013
  • To assess environmental contamination with carcinogens, carbonaceous compounds, water-soluble ionic species and trace gaseous species were identified and quantified every three hours for three days st three different atmospheric layer at the heart of chiang-Mai, bangkok and hat-Yai from December 2006 to February 2007. A DRI model 2001 Themal/Optical Carbon Analyzer with the IMPROVE thermal/optical reflectance (TOR) protocol was used to quantify the organic carbon(OC) and elemental carbon content in $PM_{10}$. Diurnal and vertical variability was also carefully investigated. In general, OC and EC contenttration shoeed the highest values at the monitoring period o 21.00-00.00 as consequences of human activities at night bazaar coupled with reduction of mixing layer, decreased wind speed and termination of photolysis nighttime. Morning peaks of carboaceous compounds were observed during the sampling period of 06:00 -09:00, emphasizing the main contribution of traffic emission in the three cities. The estimation of incremental lifetime partculate matter exposure (ILPE) raises concern of high risk of carbonaceous accumulation over workers and residents living close to the observatory sites. The average values of incremental lifrtime particulate matter exposure (ILPE) of total carbon at Baiyoke Suit Hotel and Baiyoke Sky Hotel are approsimately ten time shigher then those air sample collected at prince of songkla University Hat-Yai campus corpse incinerator and fish-can maufacturing factory but only slightly higher than those of rice straw burnig in Songkla province. This indicates a high risk of developing lung cancer and other respiratory diseases across workers and residents living in high buildings located in Pratunam area. Using knowledge of carbonaceous fractions in $PM_{10}$, one can estimate the gas-particle partitioning of polycyclic aromatic hydrocarbons (PAHs). Dachs-Eisenreich model highlights the crucial role of adsorption in gas-particle partitioning of low molecular weight PAHs, whereas both absorption and adsorption tend to account for gas-particle partitioning of high molecular weight PAHs in urban residential zones of Thailand. Interestingly, the absorption mode alone plays a minor role in gas-partcle partitiining of PAHs in Chiang-Mai, Bangkok and hat-Yai.

Relationship between Meteorological Elements and Aerosols Number Concentration at Gosan, Jeju for $2001{\sim}2003$ (제주 고산 지역의 에어러솔 수농도 변동과 기상요소와의 상관성 연구 : 2001-2003)

  • Lee, Myoung-Joo;Oh, Sung-Nam;NhoKim, Eun-Yun;Chang, Ki-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.3 s.22
    • /
    • pp.47-56
    • /
    • 2006
  • With the aim to develop the monitoring technology on background atmosphere and climate change over Korean Peninsula, observations and studies on chemical, physical and optical properties of the atmospheric aerosols are made. Aerosol number concentration are measured with Optical Particle Counter from 2001 to 2003 at Gosan for 8 size intervals from 0.3 to $25{\mu}m$ diameter range. For the seasonal variation, the number concentration of coarse particles in spring at Gosan was higher than other seasons due to the influence of sand storm in spring. There is no significant correlations between fine particles ($0.3{\sim}0.5{\mu}m$) and meteorological parameters, such as relative humidity, wind speed and visual range, while the correlation between the number concentration of small particles ($0.5{\sim}2.23{\mu}m$) and relative humidity showed a positive value. This trend was inversed for the case of wind speed: aerosol number concentration showed a small decreasing tendency with increasing wind speed for small particles but the high wind speed in winter season increased coarse particle concentration. Finally, Particles most efficient in light extinction were found to be at the size of about $0.5{\sim}1{\mu}m$.

An Analysis of MODIS Aerosol Optical Properties and Ground-based Mass Concentrations in Central Korea in 2009 (2009년 한국 중부 지역에서 MODIS 에어로졸 광학 성질과 질량 농도의 분석)

  • Kim, Hak-Sung;Kim, Ji-Min;Sohn, Jung-Joo
    • Journal of the Korean earth science society
    • /
    • v.33 no.3
    • /
    • pp.269-279
    • /
    • 2012
  • Satellite-retrieved data on Aerosol Optical Depth (AOD) and ${\AA}$ngstr$\ddot{o}$m exponent (AE) using a Moderate Resolution Imaging Spectrometer (MODIS) were used to analyze large-scale distributions of atmospheric aerosols in East Asia. AOD was relatively high in March ($0.44{\pm}0.25$) and low in September ($0.24{\pm}0.21$) in the East Asian region in 2009. Sandstorms originating from the deserts and dry areas in Northern China and Mongolia were transported on a massive scale during the springtime, thus contributing to the high AOD in East Asia. Although $PM_{10}$ with diameters ${\leq}10{\mu}m$ was the highest in February at Anmyon, Cheongwon and Ulleung, which is located leeward about half-way through the Korean Peninsula, AOD rose to a high in May. The growth of hygroscopic aerosols moving with increases in relative humidity prior to the Asian monsoon season contributed to a high AOD level in May. AE typically reaches its highest value ($1.30{\pm}0.37$) in August due to anthropogenic aerosols originating from industrial areas in Eastern China, while AOD stays low in summer due to the removal process caused by rainfall. The linear correlation coefficients of the MODIS AOD and ground-based mass concentrations of $PM_{10}$ at Anmyon, Cheongwon and Ulleung were 0.4-0.6. Four cases (six days) of mineral dustfall from sandstorms and six cases (twelve days) of anthropogenically polluted particles were observed in the central area of the Korean Peninsula in 2009. $PM_{10}$ mass concentrations increased at both Anmyon and Cheongwon in the cases of mineral dustfall and anthropogenically polluted particles. Cases of dustfall from sandstorms and anthropogenic polluted particles, with increasing $PM_{10}$ mass concentrations, exhibited higher AOD values in the Yellow Sea region.

Retrieval of Hourly Aerosol Optical Depth Using Top-of-Atmosphere Reflectance from GOCI-II and Machine Learning over South Korea (GOCI-II 대기상한 반사도와 기계학습을 이용한 남한 지역 시간별 에어로졸 광학 두께 산출)

  • Seyoung Yang;Hyunyoung Choi;Jungho Im
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.933-948
    • /
    • 2023
  • Atmospheric aerosols not only have adverse effects on human health but also exert direct and indirect impacts on the climate system. Consequently, it is imperative to comprehend the characteristics and spatiotemporal distribution of aerosols. Numerous research endeavors have been undertaken to monitor aerosols, predominantly through the retrieval of aerosol optical depth (AOD) via satellite-based observations. Nonetheless, this approach primarily relies on a look-up table-based inversion algorithm, characterized by computationally intensive operations and associated uncertainties. In this study, a novel high-resolution AOD direct retrieval algorithm, leveraging machine learning, was developed using top-of-atmosphere reflectance data derived from the Geostationary Ocean Color Imager-II (GOCI-II), in conjunction with their differences from the past 30-day minimum reflectance, and meteorological variables from numerical models. The Light Gradient Boosting Machine (LGBM) technique was harnessed, and the resultant estimates underwent rigorous validation encompassing random, temporal, and spatial N-fold cross-validation (CV) using ground-based observation data from Aerosol Robotic Network (AERONET) AOD. The three CV results consistently demonstrated robust performance, yielding R2=0.70-0.80, RMSE=0.08-0.09, and within the expected error (EE) of 75.2-85.1%. The Shapley Additive exPlanations(SHAP) analysis confirmed the substantial influence of reflectance-related variables on AOD estimation. A comprehensive examination of the spatiotemporal distribution of AOD in Seoul and Ulsan revealed that the developed LGBM model yielded results that are in close concordance with AERONET AOD over time, thereby confirming its suitability for AOD retrieval at high spatiotemporal resolution (i.e., hourly, 250 m). Furthermore, upon comparing data coverage, it was ascertained that the LGBM model enhanced data retrieval frequency by approximately 8.8% in comparison to the GOCI-II L2 AOD products, ameliorating issues associated with excessive masking over very illuminated surfaces that are often encountered in physics-based AOD retrieval processes.

Blood Lead Concentration of Taxi Drivers in Taegu, Korea (대구지역 택시기사들의 혈중 연농도)

  • SaKong, Jun;Kang, Pock-Soo;Chung, Jong-Hak
    • Journal of Preventive Medicine and Public Health
    • /
    • v.23 no.3 s.31
    • /
    • pp.255-261
    • /
    • 1990
  • Taxi drivers are exposed to vehicular exhaust aerosols which are a mar source of atmospheric lead pollution in Korea where lead additives are incorporated in petrol. To investigate the blood lead concentration, their correlation factors and influences on taxi drivers, samples were collected from 90 taxi drivers who were living in the Taegu City, during August, 1989. Blood lead concentration was estimated by the atomic absorption spectrophotometer (IL.551) equipped with flameless furnace atomizer (IL.665). The results were analyzed statistically and compared with control group selected urban population. The mean blood lead concentration of taxi drivers and control group were $26.34{\pm}6.53{mu}g/dl\;and\;20.77{\pm}4.80{\mu}g/dl$ respectively (p<0.01). No significant correlation was observed between the blood lead concentration of taxi drivers and driver career (r=0.093). There were no difference of statistical significance in the blood lead concentration of smokers and nonsmokers.

  • PDF