DOI QR코드

DOI QR Code

도시지역 PM2.5의 HULIS 화학 특성 및 발생 과정 조사

Chemical Characteristics and Formation Pathways of Humic Like Substances (HULIS) in PM2.5 in an Urban Area

  • 손세창 (전남대학교 환경에너지공학과) ;
  • 배민석 (국립목포대학교 환경공학과) ;
  • 박승식 (전남대학교 환경에너지공학과)
  • Son, Se-Chang (Department of Environment and Energy Engineering, Chonnam National University) ;
  • Bae, Min-Suk (Department of Environmental Engineering, Mokpo National University) ;
  • Park, Seung-Shik (Department of Environment and Energy Engineering, Chonnam National University)
  • 투고 : 2015.02.24
  • 심사 : 2015.04.24
  • 발행 : 2015.06.30

초록

Little information on HUmic-Like Substances (HULIS) in ambient particulate matter has been reported yet in Korea. HULIS makes up a significant fraction of the water-soluble organic mass in the atmospheric aerosols and influence their water uptake properties. In this study 24-hr $PM_{2.5}$ samples were collected between December 2013 and October 2014 at an urban site in Gwangju and analyzed for organic carbon (OC), elemental carbon (EC), water-soluble OC (WSOC), HULIS, and ionic species, to investigate possible sources and formation processes of HULIS. HULIS was separated using solid phase extraction method and quantified by total organic carbon analyzer. During the study period, HULIS concentration ranged from 0.19 to $5.65{\mu}gC/m^3$ with an average of $1.83{\pm}1.22{\mu}gC/m^3$, accounting for on average 45% of the WSOC (12~ 73%), with higher in cold season than in warm season. Strong correlation of WSOC with HULIS ($R^2=0.91$) indicates their similar chemical characteristics. On the basis of the relationships between HULIS and a variety of chemical species (EC, $K^+$, $NO_3{^-}$, $SO_4{^{2-}}$, and oxalate), it was postulated that HULIS observed during summer and winter were likely attributed to secondary formation and primary emissions from biomass burning (BB) and traffics. Stronger correlation of HULIS with $K^+$, which is a BB tracer, in winter ($R^2=0.81$) than in summer ($R^2=0.66$), suggests more significant contribution of BB emissions in winter to the observed HULIS. It is interesting to note that BB emissions may also have an influence on the HULIS in summer, but further study using levoglucosan that is a unique organic marker of BB emissions is required during summer. Higher correlation between HULIS and oxalate, which is mainly formed through cloud processing and/or photochemical oxidation processes, was found in the summer ($R^2=0.76$) than in the winter ($R^2=0.63$), reflecting a high fraction of secondary organic aerosol in the summer.

키워드

참고문헌

  1. Cavalli, F., M.C. Facchini, S. Decesari, M. Mircea, L. Emblico, S. Fuzzi, D. Ceburnis, Y.J. Yoon, C.D. O'Dowd, J.-P. Putaud, and A. Dell'Acqua (2004) Advances in characterization of size-resolved organic matter in marine aerosol over the North Atlantic, J. Geophys. Res.-Atmos., 109(D24), D24215, doi:10.1029/2004JD005137.
  2. Cho, S.Y. and S.S. Park (2013) Resolving sources of watersoluble organic carbon in fine particulate matter measured during winter at an urban site, Environ. Sci. Processes Impacts, 15(2), 524-534. https://doi.org/10.1039/c2em30730h
  3. Decesari, S., M.C. Facchini, E. Matta, S. Fuzzi, and E. Tagliavini (2000) Characterization of water-soluble organic compounds in atmospheric aerosol: a new approach, J. Geophy. Res., 105, 1481-1489. https://doi.org/10.1029/1999JD900950
  4. Decesari, S., M.C. Facchini, E. Matta, F. Lettini, M. Mircea, S. Fuzzi, E. Tagliavini, and J.-P. Putaud (2001) Chemical features and seasonal variation of fine aerosol water-soluble organic compounds in the Po Valley, Italy, Atmos. Environ., 35, 3691-3699. https://doi.org/10.1016/S1352-2310(00)00509-4
  5. Decesari, S., M.C. Facchini, E. Matta, M. Mircea, S. Fuzzi, A.R. Chughtai, and D.M. Smith (2002) Water soluble organic compounds formed by oxidation of soot, Atmos. Environ., 36, 1827-1832. https://doi.org/10.1016/S1352-2310(02)00141-3
  6. Decesari, S., M.C. Facchini, S. Fuzzi, G.B. McFiggans, H. Coe, and K.N. Bower (2005) The water-soluble organic component of size-segregated aerosol, cloud water and wet depositions from Jeju Island during ACEA-sia, Atmos. Environ., 39, 211-222. https://doi.org/10.1016/j.atmosenv.2004.09.049
  7. Draxler, R.R. and G.D. Rolph (2014) HYSPLIT (Hybrid Single- Particle Lagrangian Integrated Trajectory) model access via NOAA ARL READY Website (http://www.arl.noaa.gov/ready/hysplit4.html). NOAA Air Resources Laboratory, Silver Spring, MD.
  8. Facchini, M.C., M. Mircea, S. Fuzzi, and R.J. Charlson (1999) Cloud albedo enhancement by surface-active organic solutes in growing droplets, Nature, 401, 257-259. https://doi.org/10.1038/45758
  9. Falkovich, A.H., E.R. Graber, G. Schkolnik, Y. Rudich, W. Maenhaut, and P. Artaxo (2005) Low molecular weight organic acids in aerosol particles from Rondonia Brazil during the biomass-burning transition and wet periods, Atmos. Chem. Phys., 5, 781-797. https://doi.org/10.5194/acp-5-781-2005
  10. Gelencser, A., A. Hoffer, Z. Krivacsy, G. Kiss, A. Molnar, and E. Meszaros (2000) On the possible origin of humic matter in fine continental aerosol, J. Geophys. Res.-Atmos., 107(D12), 4137, doi:10.1029/2001JD001299.
  11. Gelencser, A., A. Hoffer, G. Kiss, E. Tombacz, R. Kurdi, and L. Beneze (2003) In-situ formation of light-absorbing organic matter in cloud water, J. Atmos. Chem., 45, 25-33. https://doi.org/10.1023/A:1024060428172
  12. Graber, E.R. and Y. Rudich (2006) Atmospheric HULIS: how humic-like are they? A Comprehensive and critical review, Atmos. Chem. Phys., 6, 729-753. https://doi.org/10.5194/acp-6-729-2006
  13. Havers, N., P. Burba, J. Lambert, and D. Klockow (1998) Spectroscopic characterization of humic-like substances in airborne particulate matter, J. Atmos. Chem., 29, 45-54. https://doi.org/10.1023/A:1005875225800
  14. Hennigan, C.J., M.H. Bergin, J.E. Dibb, and R.J. Weber (2008) Enhanced secondary organic aerosol formation due to water uptake by fine particles, J. Geophys. Res., 35, L18801. doi:10.1029/2008GL035046.
  15. Hennigan, C.J., M.H. Bergin, A.G. Russell, A. Nenes, and R.J. Weber (2009) Gas/particle partitioning of water-soluble organic aerosol in Atlanta, Atmos. Chem. Phys., 9, 3613-3628. https://doi.org/10.5194/acp-9-3613-2009
  16. Hoffer, A., A. Gelencser, P. Guyon, G. Kiss, O. Schmid, G.P. Frank, P. Artaxo, and M.O. Andreae (2006) Optical properties of humic-like substances (HULIS) in biomass-burning aerosols, Atmos. Chem. Phys., 6, 3563-3570. https://doi.org/10.5194/acp-6-3563-2006
  17. Holmes, B.J. and G.A. Petrucci (2007) Oligomerization of levoglucosan by Fenton chemistry in proxies of biomass burning aerosols, J. Atmos. Chem., 58, 151-166. https://doi.org/10.1007/s10874-007-9084-8
  18. Huang, X.-F., J.Z. Yu, L.-Y. He, and Z. Yuan (2006) Watersoluble organic carbon and oxalate in aerosols at a coastal urban site in China: size distribution characteristics, sources, and formation mechanisms, J. Geophys. Res., 111, D22212. https://doi.org/10.1029/2006JD007408
  19. Iinuma, Y., O. Boge, T. Gnauk, and H. Herrmann (2004) Aerosol chamber study of the alpha-pinene/O3 reaction: Influence of particle acidity on aerosol yields and products, Atmos. Environ., 38, 761-773. https://doi.org/10.1016/j.atmosenv.2003.10.015
  20. Jaffrezo, J.-L., G. Aymoz, C. Delaval, and J. Cozic (2005) Seasonal variation of the water soluble organic carbon mass fraction of aerosol in two valleys of the French Alps, Atmos. Chem. Phys., 5, 2809-2821. https://doi.org/10.5194/acp-5-2809-2005
  21. Jeong, J.U., J.H. Kim, S.S. Park, K.J. Moon, and S.J. Lee (2011) Study on characterization of hydrophilic and hydrophobic fractions of water-soluble organic carbon with a XAD resin, J. Korean Soc. Atmos. Environ., 27(3), 337-346. (in Korean with English abstract) https://doi.org/10.5572/KOSAE.2011.27.3.337
  22. Kawamura, K. and I.R. Kaplan (1987) Motor exhaust emissions as a primary source for dicarboxylic acids in Los Angles ambient air, Environ. Sci. Technol., 21, 105-110. https://doi.org/10.1021/es00155a014
  23. Kawamura, K. and O. Yasui (2005) Diurnal changes in the distribution of dicarboxylic acids, ketocarboxylic acids and dicarbonyls in the urban Tokyo atmosphere, Atmos. Environ., 39, 1945-1960. https://doi.org/10.1016/j.atmosenv.2004.12.014
  24. Kerminen, V.-M., C. Ojanen, T. Pakkanen, R. Hillamo, M. Aurela, and J. Merilaien (2000) Low-molecular-weight dicarboxylic acids in an urban and rural atmosphere, J. Aerosol Sci., 31, 349-362. https://doi.org/10.1016/S0021-8502(99)00063-4
  25. Kiss, G., B. Varga, I. Galambos, and I. Ganszky (2002) Characterization of water-soluble organic matter isolated from atmospheric fine aerosol, J. Geophys. Res., 107(D21), 8339, doi:10.1029/2001JD000603.
  26. Kiss, G., E. Tombacz, and H.C. Hansson (2005) Surface tension effects of humic-like substances in the aqueous extract of troposphere fine aerosol, J. Atmos. Chem., 50, 279-294. https://doi.org/10.1007/s10874-005-5079-5
  27. Kondo, Y., Y. Miyazaki, N. Takegawa, T. Miyakawa, R.J. Weber, J.L. Jimenez, Q. Zhang, and D.R. Worsnop (2007) Oxygenated and water-soluble organic aerosols in Tokyo, J. Geophys. Res., 112, D01203, doi:10.1029/2006JD007056.
  28. Krivacsy, Z., A. Gelencser, G. Kiss, E. Meszaros, A. Molnar, A. Hoffer, T. Meszaros, Z. Sarvari, D. Temesi, B. Varga, U. Baltensperger, S. Nyeki, and E. Weingartner (2001) Study of chemical character of water soluble organic compounds in fine atmospheric aerosol at the Jungfraujoch, J. Atmos. Chem., 39, 235-259. https://doi.org/10.1023/A:1010637003083
  29. Krivacsy, Z., G. Kiss, D. Ceburnis, G. Jennings, W. Maenhaut, I. Salma, and D. Shooter (2008) Study of water-soluble atmospheric humic matter in urban and marine environments, Atmos. Res., 87, 1-12. https://doi.org/10.1016/j.atmosres.2007.04.005
  30. Lim, H.-J., A.G. Carlton, and B.J. Turpin (2005) Isoprene forms secondary organic aerosol through cloud processing: model simulations, Environ. Sci. Technol., 38, 4441-4446.
  31. Limbeck, A., M. Handler, B. Neuberger, B. Klatzer, and H. Puxbaum (2005) Carbon-specific analysis of humiclike substances in atmospheric aerosol and precipitation samples, Anal. Chem., 77, 7288-7293. https://doi.org/10.1021/ac050953l
  32. Lin, P., X.-F. Huang, Y.-Y. He, and J. Zhen (2010) Abundance and size distribution of HULIS in ambient aerosols at a rural site in South China, J. Aerosol Sci., 41, 74-87. https://doi.org/10.1016/j.jaerosci.2009.09.001
  33. Lukacs, H., A. Gelencser, S. Hammer, H. Puxbaum, C. Pio, M. Legrand, A. Kasper-Giebl, M. Handler, A. Limbeck, D. Simpson, and S. Preunkert (2007) Seasonal trends and possible sources of brown carbon based on 2-year aerosol measurements at six sites in Europe, J. Geophys. Res.-Atmos., 112, D23S18, doi:10.1029/2006JD008151.
  34. Mayol-Bracero, O.L., P. Guyon, B. Graham, G. Roberts, M.O. Andreae, S. Decesari, M.C. Facchini, S. Fuzzi, and P. Artaxoet (2002) Water-soluble organic compounds in biomass burning aerosols over Amazonia. 2 Apportionment of the chemical composition and importance of the polyacidic fraction, J. Geophys. Res.-Atmos., 107(D20), 8091, doi:10.1029/2001JD000522.
  35. Miyazaki, Y., Y. Kondo, M. Shiraiwa, N. Takegawa, T. Miyakawa, S. Han, K. Kita, M. Hu, Z.Q. Deng, Y. Zhao, N. Sugimoto, D.R. Blake, and R.J. Weber (2009) Chemical characterization of water-soluble organic carbon aerosols at a rural site in Pearl River Delta, China, in the summer of 2006, J. Geophys. Res., 114, D14208, doi:10.1029/2009JD011736.
  36. Miyazaki, Y., Y. Kondo, N. Takegawa, Y. Komazaki, K. Kawamura, M. Mochida, K. Okuzawa, and R.J. Weber (2006) Time-resolved measurements of water-soluble organic carbon in Tokyo, J. Geophys. Res., 111, D23206, doi:10.1029/2006JD007125.
  37. Moonshine, M., Y. Rudich, S. Katsman, and E.R. Graber (2008) Atmospheric HULIS enhance pollutant degradation by promoting the dark Fenton reaction, Geophys. Res. Lett., 35, L20807. https://doi.org/10.1029/2008GL035285
  38. National Institute of Occupational Safety and Health (NIOSH) (1996) Method 5040 Issue 1: Elemental Carbon (Diesel Exhaust), NIOSH Manual of Analytical Methods, fourth ed.. Cincinnati, OH.
  39. Park, S.S. and S.Y. Cho (2011) Tracking sources and behaviors of water-soluble organic carbon in fine particulate matter measured at an urban site in Korea, Atmos. Environ., 45, 60-72. https://doi.org/10.1016/j.atmosenv.2010.09.045
  40. Park, S.S., J.M. Ko, and C.H. Jung (2011). Characteristic of water-soluble components of PM10 at Taean and Gangneung sites in summer season, J. Korean Soc. Atmos. Environ., 27(3), 291-302. (in Korean with English abstract) https://doi.org/10.5572/KOSAE.2011.27.3.291
  41. Park, S.S., J.J. Schauer, and S.Y. Cho (2013a) Sources and their contribution to two water-soluble organic carbon fractions at a roadway site, Atmos. Environ., 77, 348-357. https://doi.org/10.1016/j.atmosenv.2013.05.032
  42. Park, S.S., S.Y. Sim, M.S. Bae, and J.J. Schauer (2013b) Size distribution of water-soluble components in particulate matter emitted from biomass burning, Atmos. Environ., 73, 62-72. https://doi.org/10.1016/j.atmosenv.2013.03.025
  43. Park, S.S., S.-J. Kim, B.-J. Gong, K.-H. Lee, S.-Y. Cho, J.-C. Kim, and S.-J. Lee (2013c) Investigation on a haze episode of fine particulate matter using semi-continuous chemical composition data, J. Korean Soc. Atmos. Environ., 29(5), 642-655. (in Korean with English abstract) https://doi.org/10.5572/KOSAE.2013.29.5.642
  44. Park, S.S. and D.M. Shin (2013) Characteristic of size-resolved water-soluble organic carbon in atmospheric aerosol particles observed during daytime and nighttime in an urban area, Par. Aerosol Res., 9(1), 7-21. https://doi.org/10.11629/jpaar.2013.9.1.007
  45. Ruellan, S. and H. Cachier (2001) Characterization of fresh particulate vehicular exhausts near a Paris high flow road, Atmos. Environ., 35, 453-468. https://doi.org/10.1016/S1352-2310(00)00110-2
  46. Saarikoski, S., H. Timonen, K. Saarnio, M. Aurela, L. Järvi, P. Keronen, V.-M. Kerminen, and R. Hillamo (2008) Sources of organic carbon in fine particulate matter in northern European urban air, Atmos. Chem. Phys., 8, 6281-6295. https://doi.org/10.5194/acp-8-6281-2008
  47. Salma, I., T. Mészáros, W. Maenhaut, E. Vass, and Z. Majer (2010) Chirality and the origin of atmospheric humiclike substances, Atmos. Chem. Phys., 10, 1315-1327. https://doi.org/10.5194/acp-10-1315-2010
  48. Saxena, P. and L.M. Hildemann (1996) Water-soluble organics in atmospheric particles: a critical review of the literature and application of thermodynamics to identify candidate compounds, J. Atmos. Chem., 24, 57-109. https://doi.org/10.1007/BF00053823
  49. Song, J., L. He, P.A. Peng, J. Zhao, and S. Ma (2012) Chemical and isotopic composition of humic-like substances (HULIS) in ambient aerosols in Guangzhou, South China, Aerosol Sci. Technol., 46, 533-546. https://doi.org/10.1080/02786826.2011.645956
  50. Sullivan, A.P. and R.J. Weber (2006) Chemical characterization of the ambient organic aerosol soluble in water: 1. Isolation of hydrophilic and hydrophobic fractions with a XAD-8 resin, J. Geophys. Res., 111, D05314. doi:10.1029/2005JD006485.
  51. Watson, J.G., T. Zhu, J.C. Chow, J. Engelbrecht, E.M. Fujita, and W.E. Wilson (2002) Receptor modeling application framework for particle source apportionment, Chemosphere, 1093-1136.
  52. Weber, R.J., A.P. Sullivan, R.E. Peltier, A. Russell, B. Yan, M. Zheng, J. de Gouw, C. Warneke, C. Brock, J.S. Holloway, E.L. Atlas, and E. Edgerton (2007) A study of secondary organic aerosol formation in the anthropogenic-influenced southeastern United States, J. Geophys. Res., 112, D13302. doi:10.1029/2007JD008408.
  53. Wonaschütz, A., S.P. Hersey, A. Sorooshian, J.S. Craven, A.R. Metcalf, R.C. Flagan, and J.H. Seinfeld (2011) Impact of a large wildfire on water-soluble organic aerosol in a major urban setting: the 2009 station fire in Los Angeles County, Atmos. Chem. Phys., 11, 8257-8270. https://doi.org/10.5194/acp-11-8257-2011
  54. Yu, G.H., S.-C. Son, S.Y. Cho, and S.S. Park (2015) Investigating the possibility of using rare earth elements as crustal elemental markers in $PM_{2.5}$, J. Korean Soc. Environ. Anal., 18(1), 1-11.
  55. Yu, G.H., S.Y. Cho, M.S. Bae, and S.S. Park (2014) Difference in production routes of water-soluble organic carbon in PM2.5 observed during non-biomass and biomass burning periods in Gwangju, Korea, Environ. Sci.: Processes Impacts, 16, 1726-1736. https://doi.org/10.1039/c4em00126e
  56. Yu, J. (2002) Chemical characterization of water soluble organic compounds in particulate matters in Hong Kong. Final report for the Provision of Service to the Environmental Protection Department, HKSAR (Tender Ref. AS01-018), Hong Kong.
  57. Yu, J.Z., H. Yang, H. Zhang, and A.K.H. Lau (2004) Size distributions of water-soluble organic carbon in ambient aerosols and its size-resolved thermal characteristics, Atmos. Environ., 38, 1061-1071. https://doi.org/10.1016/j.atmosenv.2003.10.049
  58. Yu, J.Z., S.F. Huang, J.H. Xu, and M. Hu (2005) When aerosol sulfate goes up, so does oxalate: implication for the formation mechanisms of oxalate, Environ. Sci. Technol., 39, 128-133. https://doi.org/10.1021/es049559f

피인용 문헌

  1. Investigation of PM2.5 Pollution Episodes in Gwangju vol.31, pp.3, 2015, https://doi.org/10.5572/KOSAE.2015.31.3.269
  2. Source Apportionment of Fine Particulate Matter (PM2.5) in the Chungju City vol.31, pp.5, 2015, https://doi.org/10.5572/KOSAE.2015.31.5.437
  3. Size distribution and sources of humic-like substances in particulate matter at an urban site during winter vol.18, pp.1, 2016, https://doi.org/10.1039/C5EM00423C
  4. Comparison of PM2.5 Concentrations by Measurement Method vol.33, pp.5, 2017, https://doi.org/10.5572/KOSAE.2017.33.5.515
  5. Aethalometer-based Estimate of Mass Absorption Cross Section of Black Carbon Particles at an Urban Site of Gwangju vol.34, pp.5, 2018, https://doi.org/10.5572/KOSAE.2018.34.5.727
  6. Effect of Air Stagnation Conditions on Mass Size Distributions of Water-soluble Aerosol Particles vol.34, pp.3, 2018, https://doi.org/10.5572/KOSAE.2018.34.3.418
  7. Development of the Analytical Method for Insecticide Tolfenpyrad Determination in Agricultural Commodities using LC-MS/MS vol.22, pp.2, 2018, https://doi.org/10.7585/kjps.2018.22.2.143