Browse > Article
http://dx.doi.org/10.5572/KOSAE.2015.31.3.239

Chemical Characteristics and Formation Pathways of Humic Like Substances (HULIS) in PM2.5 in an Urban Area  

Son, Se-Chang (Department of Environment and Energy Engineering, Chonnam National University)
Bae, Min-Suk (Department of Environmental Engineering, Mokpo National University)
Park, Seung-Shik (Department of Environment and Energy Engineering, Chonnam National University)
Publication Information
Journal of Korean Society for Atmospheric Environment / v.31, no.3, 2015 , pp. 239-254 More about this Journal
Abstract
Little information on HUmic-Like Substances (HULIS) in ambient particulate matter has been reported yet in Korea. HULIS makes up a significant fraction of the water-soluble organic mass in the atmospheric aerosols and influence their water uptake properties. In this study 24-hr $PM_{2.5}$ samples were collected between December 2013 and October 2014 at an urban site in Gwangju and analyzed for organic carbon (OC), elemental carbon (EC), water-soluble OC (WSOC), HULIS, and ionic species, to investigate possible sources and formation processes of HULIS. HULIS was separated using solid phase extraction method and quantified by total organic carbon analyzer. During the study period, HULIS concentration ranged from 0.19 to $5.65{\mu}gC/m^3$ with an average of $1.83{\pm}1.22{\mu}gC/m^3$, accounting for on average 45% of the WSOC (12~ 73%), with higher in cold season than in warm season. Strong correlation of WSOC with HULIS ($R^2=0.91$) indicates their similar chemical characteristics. On the basis of the relationships between HULIS and a variety of chemical species (EC, $K^+$, $NO_3{^-}$, $SO_4{^{2-}}$, and oxalate), it was postulated that HULIS observed during summer and winter were likely attributed to secondary formation and primary emissions from biomass burning (BB) and traffics. Stronger correlation of HULIS with $K^+$, which is a BB tracer, in winter ($R^2=0.81$) than in summer ($R^2=0.66$), suggests more significant contribution of BB emissions in winter to the observed HULIS. It is interesting to note that BB emissions may also have an influence on the HULIS in summer, but further study using levoglucosan that is a unique organic marker of BB emissions is required during summer. Higher correlation between HULIS and oxalate, which is mainly formed through cloud processing and/or photochemical oxidation processes, was found in the summer ($R^2=0.76$) than in the winter ($R^2=0.63$), reflecting a high fraction of secondary organic aerosol in the summer.
Keywords
$PM_{2.5}$; Water-soluble organic carbon; HULIS; Secondary organic aerosol; Biomass burning;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Cavalli, F., M.C. Facchini, S. Decesari, M. Mircea, L. Emblico, S. Fuzzi, D. Ceburnis, Y.J. Yoon, C.D. O'Dowd, J.-P. Putaud, and A. Dell'Acqua (2004) Advances in characterization of size-resolved organic matter in marine aerosol over the North Atlantic, J. Geophys. Res.-Atmos., 109(D24), D24215, doi:10.1029/2004JD005137.   DOI
2 Cho, S.Y. and S.S. Park (2013) Resolving sources of watersoluble organic carbon in fine particulate matter measured during winter at an urban site, Environ. Sci. Processes Impacts, 15(2), 524-534.   DOI   ScienceOn
3 Decesari, S., M.C. Facchini, E. Matta, S. Fuzzi, and E. Tagliavini (2000) Characterization of water-soluble organic compounds in atmospheric aerosol: a new approach, J. Geophy. Res., 105, 1481-1489.   DOI
4 Decesari, S., M.C. Facchini, E. Matta, F. Lettini, M. Mircea, S. Fuzzi, E. Tagliavini, and J.-P. Putaud (2001) Chemical features and seasonal variation of fine aerosol water-soluble organic compounds in the Po Valley, Italy, Atmos. Environ., 35, 3691-3699.   DOI   ScienceOn
5 Decesari, S., M.C. Facchini, E. Matta, M. Mircea, S. Fuzzi, A.R. Chughtai, and D.M. Smith (2002) Water soluble organic compounds formed by oxidation of soot, Atmos. Environ., 36, 1827-1832.   DOI   ScienceOn
6 Decesari, S., M.C. Facchini, S. Fuzzi, G.B. McFiggans, H. Coe, and K.N. Bower (2005) The water-soluble organic component of size-segregated aerosol, cloud water and wet depositions from Jeju Island during ACEA-sia, Atmos. Environ., 39, 211-222.   DOI   ScienceOn
7 Draxler, R.R. and G.D. Rolph (2014) HYSPLIT (Hybrid Single- Particle Lagrangian Integrated Trajectory) model access via NOAA ARL READY Website (http://www.arl.noaa.gov/ready/hysplit4.html). NOAA Air Resources Laboratory, Silver Spring, MD.
8 Facchini, M.C., M. Mircea, S. Fuzzi, and R.J. Charlson (1999) Cloud albedo enhancement by surface-active organic solutes in growing droplets, Nature, 401, 257-259.   DOI
9 Falkovich, A.H., E.R. Graber, G. Schkolnik, Y. Rudich, W. Maenhaut, and P. Artaxo (2005) Low molecular weight organic acids in aerosol particles from Rondonia Brazil during the biomass-burning transition and wet periods, Atmos. Chem. Phys., 5, 781-797.   DOI
10 Gelencser, A., A. Hoffer, Z. Krivacsy, G. Kiss, A. Molnar, and E. Meszaros (2000) On the possible origin of humic matter in fine continental aerosol, J. Geophys. Res.-Atmos., 107(D12), 4137, doi:10.1029/2001JD001299.   DOI
11 Gelencser, A., A. Hoffer, G. Kiss, E. Tombacz, R. Kurdi, and L. Beneze (2003) In-situ formation of light-absorbing organic matter in cloud water, J. Atmos. Chem., 45, 25-33.   DOI   ScienceOn
12 Hennigan, C.J., M.H. Bergin, A.G. Russell, A. Nenes, and R.J. Weber (2009) Gas/particle partitioning of water-soluble organic aerosol in Atlanta, Atmos. Chem. Phys., 9, 3613-3628.   DOI
13 Graber, E.R. and Y. Rudich (2006) Atmospheric HULIS: how humic-like are they? A Comprehensive and critical review, Atmos. Chem. Phys., 6, 729-753.   DOI
14 Havers, N., P. Burba, J. Lambert, and D. Klockow (1998) Spectroscopic characterization of humic-like substances in airborne particulate matter, J. Atmos. Chem., 29, 45-54.   DOI   ScienceOn
15 Hennigan, C.J., M.H. Bergin, J.E. Dibb, and R.J. Weber (2008) Enhanced secondary organic aerosol formation due to water uptake by fine particles, J. Geophys. Res., 35, L18801. doi:10.1029/2008GL035046.   DOI   ScienceOn
16 Hoffer, A., A. Gelencser, P. Guyon, G. Kiss, O. Schmid, G.P. Frank, P. Artaxo, and M.O. Andreae (2006) Optical properties of humic-like substances (HULIS) in biomass-burning aerosols, Atmos. Chem. Phys., 6, 3563-3570.   DOI
17 Holmes, B.J. and G.A. Petrucci (2007) Oligomerization of levoglucosan by Fenton chemistry in proxies of biomass burning aerosols, J. Atmos. Chem., 58, 151-166.   DOI
18 Huang, X.-F., J.Z. Yu, L.-Y. He, and Z. Yuan (2006) Watersoluble organic carbon and oxalate in aerosols at a coastal urban site in China: size distribution characteristics, sources, and formation mechanisms, J. Geophys. Res., 111, D22212.   DOI
19 Iinuma, Y., O. Boge, T. Gnauk, and H. Herrmann (2004) Aerosol chamber study of the alpha-pinene/O3 reaction: Influence of particle acidity on aerosol yields and products, Atmos. Environ., 38, 761-773.   DOI   ScienceOn
20 Jaffrezo, J.-L., G. Aymoz, C. Delaval, and J. Cozic (2005) Seasonal variation of the water soluble organic carbon mass fraction of aerosol in two valleys of the French Alps, Atmos. Chem. Phys., 5, 2809-2821.   DOI
21 Jeong, J.U., J.H. Kim, S.S. Park, K.J. Moon, and S.J. Lee (2011) Study on characterization of hydrophilic and hydrophobic fractions of water-soluble organic carbon with a XAD resin, J. Korean Soc. Atmos. Environ., 27(3), 337-346. (in Korean with English abstract)   DOI   ScienceOn
22 Kawamura, K. and I.R. Kaplan (1987) Motor exhaust emissions as a primary source for dicarboxylic acids in Los Angles ambient air, Environ. Sci. Technol., 21, 105-110.   DOI   ScienceOn
23 Kawamura, K. and O. Yasui (2005) Diurnal changes in the distribution of dicarboxylic acids, ketocarboxylic acids and dicarbonyls in the urban Tokyo atmosphere, Atmos. Environ., 39, 1945-1960.   DOI   ScienceOn
24 Kerminen, V.-M., C. Ojanen, T. Pakkanen, R. Hillamo, M. Aurela, and J. Merilaien (2000) Low-molecular-weight dicarboxylic acids in an urban and rural atmosphere, J. Aerosol Sci., 31, 349-362.   DOI   ScienceOn
25 Kiss, G., B. Varga, I. Galambos, and I. Ganszky (2002) Characterization of water-soluble organic matter isolated from atmospheric fine aerosol, J. Geophys. Res., 107(D21), 8339, doi:10.1029/2001JD000603.   DOI
26 Kiss, G., E. Tombacz, and H.C. Hansson (2005) Surface tension effects of humic-like substances in the aqueous extract of troposphere fine aerosol, J. Atmos. Chem., 50, 279-294.   DOI
27 Kondo, Y., Y. Miyazaki, N. Takegawa, T. Miyakawa, R.J. Weber, J.L. Jimenez, Q. Zhang, and D.R. Worsnop (2007) Oxygenated and water-soluble organic aerosols in Tokyo, J. Geophys. Res., 112, D01203, doi:10.1029/2006JD007056.   DOI
28 Lim, H.-J., A.G. Carlton, and B.J. Turpin (2005) Isoprene forms secondary organic aerosol through cloud processing: model simulations, Environ. Sci. Technol., 38, 4441-4446.
29 Krivacsy, Z., A. Gelencser, G. Kiss, E. Meszaros, A. Molnar, A. Hoffer, T. Meszaros, Z. Sarvari, D. Temesi, B. Varga, U. Baltensperger, S. Nyeki, and E. Weingartner (2001) Study of chemical character of water soluble organic compounds in fine atmospheric aerosol at the Jungfraujoch, J. Atmos. Chem., 39, 235-259.   DOI   ScienceOn
30 Krivacsy, Z., G. Kiss, D. Ceburnis, G. Jennings, W. Maenhaut, I. Salma, and D. Shooter (2008) Study of water-soluble atmospheric humic matter in urban and marine environments, Atmos. Res., 87, 1-12.   DOI   ScienceOn
31 Limbeck, A., M. Handler, B. Neuberger, B. Klatzer, and H. Puxbaum (2005) Carbon-specific analysis of humiclike substances in atmospheric aerosol and precipitation samples, Anal. Chem., 77, 7288-7293.   DOI   ScienceOn
32 Lin, P., X.-F. Huang, Y.-Y. He, and J. Zhen (2010) Abundance and size distribution of HULIS in ambient aerosols at a rural site in South China, J. Aerosol Sci., 41, 74-87.   DOI   ScienceOn
33 Lukacs, H., A. Gelencser, S. Hammer, H. Puxbaum, C. Pio, M. Legrand, A. Kasper-Giebl, M. Handler, A. Limbeck, D. Simpson, and S. Preunkert (2007) Seasonal trends and possible sources of brown carbon based on 2-year aerosol measurements at six sites in Europe, J. Geophys. Res.-Atmos., 112, D23S18, doi:10.1029/2006JD008151.   DOI
34 Mayol-Bracero, O.L., P. Guyon, B. Graham, G. Roberts, M.O. Andreae, S. Decesari, M.C. Facchini, S. Fuzzi, and P. Artaxoet (2002) Water-soluble organic compounds in biomass burning aerosols over Amazonia. 2 Apportionment of the chemical composition and importance of the polyacidic fraction, J. Geophys. Res.-Atmos., 107(D20), 8091, doi:10.1029/2001JD000522.   DOI
35 National Institute of Occupational Safety and Health (NIOSH) (1996) Method 5040 Issue 1: Elemental Carbon (Diesel Exhaust), NIOSH Manual of Analytical Methods, fourth ed.. Cincinnati, OH.
36 Miyazaki, Y., Y. Kondo, M. Shiraiwa, N. Takegawa, T. Miyakawa, S. Han, K. Kita, M. Hu, Z.Q. Deng, Y. Zhao, N. Sugimoto, D.R. Blake, and R.J. Weber (2009) Chemical characterization of water-soluble organic carbon aerosols at a rural site in Pearl River Delta, China, in the summer of 2006, J. Geophys. Res., 114, D14208, doi:10.1029/2009JD011736.   DOI
37 Miyazaki, Y., Y. Kondo, N. Takegawa, Y. Komazaki, K. Kawamura, M. Mochida, K. Okuzawa, and R.J. Weber (2006) Time-resolved measurements of water-soluble organic carbon in Tokyo, J. Geophys. Res., 111, D23206, doi:10.1029/2006JD007125.   DOI
38 Moonshine, M., Y. Rudich, S. Katsman, and E.R. Graber (2008) Atmospheric HULIS enhance pollutant degradation by promoting the dark Fenton reaction, Geophys. Res. Lett., 35, L20807.   DOI   ScienceOn
39 Park, S.S. and S.Y. Cho (2011) Tracking sources and behaviors of water-soluble organic carbon in fine particulate matter measured at an urban site in Korea, Atmos. Environ., 45, 60-72.   DOI   ScienceOn
40 Park, S.S., J.M. Ko, and C.H. Jung (2011). Characteristic of water-soluble components of PM10 at Taean and Gangneung sites in summer season, J. Korean Soc. Atmos. Environ., 27(3), 291-302. (in Korean with English abstract)   DOI   ScienceOn
41 Park, S.S., J.J. Schauer, and S.Y. Cho (2013a) Sources and their contribution to two water-soluble organic carbon fractions at a roadway site, Atmos. Environ., 77, 348-357.   DOI   ScienceOn
42 Park, S.S., S.Y. Sim, M.S. Bae, and J.J. Schauer (2013b) Size distribution of water-soluble components in particulate matter emitted from biomass burning, Atmos. Environ., 73, 62-72.   DOI   ScienceOn
43 Saarikoski, S., H. Timonen, K. Saarnio, M. Aurela, L. Järvi, P. Keronen, V.-M. Kerminen, and R. Hillamo (2008) Sources of organic carbon in fine particulate matter in northern European urban air, Atmos. Chem. Phys., 8, 6281-6295.   DOI
44 Park, S.S., S.-J. Kim, B.-J. Gong, K.-H. Lee, S.-Y. Cho, J.-C. Kim, and S.-J. Lee (2013c) Investigation on a haze episode of fine particulate matter using semi-continuous chemical composition data, J. Korean Soc. Atmos. Environ., 29(5), 642-655. (in Korean with English abstract)   DOI   ScienceOn
45 Park, S.S. and D.M. Shin (2013) Characteristic of size-resolved water-soluble organic carbon in atmospheric aerosol particles observed during daytime and nighttime in an urban area, Par. Aerosol Res., 9(1), 7-21.   DOI
46 Ruellan, S. and H. Cachier (2001) Characterization of fresh particulate vehicular exhausts near a Paris high flow road, Atmos. Environ., 35, 453-468.   DOI   ScienceOn
47 Salma, I., T. Mészáros, W. Maenhaut, E. Vass, and Z. Majer (2010) Chirality and the origin of atmospheric humiclike substances, Atmos. Chem. Phys., 10, 1315-1327.   DOI
48 Saxena, P. and L.M. Hildemann (1996) Water-soluble organics in atmospheric particles: a critical review of the literature and application of thermodynamics to identify candidate compounds, J. Atmos. Chem., 24, 57-109.   DOI
49 Song, J., L. He, P.A. Peng, J. Zhao, and S. Ma (2012) Chemical and isotopic composition of humic-like substances (HULIS) in ambient aerosols in Guangzhou, South China, Aerosol Sci. Technol., 46, 533-546.   DOI
50 Sullivan, A.P. and R.J. Weber (2006) Chemical characterization of the ambient organic aerosol soluble in water: 1. Isolation of hydrophilic and hydrophobic fractions with a XAD-8 resin, J. Geophys. Res., 111, D05314. doi:10.1029/2005JD006485.   DOI
51 Yu, G.H., S.-C. Son, S.Y. Cho, and S.S. Park (2015) Investigating the possibility of using rare earth elements as crustal elemental markers in $PM_{2.5}$, J. Korean Soc. Environ. Anal., 18(1), 1-11.
52 Watson, J.G., T. Zhu, J.C. Chow, J. Engelbrecht, E.M. Fujita, and W.E. Wilson (2002) Receptor modeling application framework for particle source apportionment, Chemosphere, 1093-1136.
53 Weber, R.J., A.P. Sullivan, R.E. Peltier, A. Russell, B. Yan, M. Zheng, J. de Gouw, C. Warneke, C. Brock, J.S. Holloway, E.L. Atlas, and E. Edgerton (2007) A study of secondary organic aerosol formation in the anthropogenic-influenced southeastern United States, J. Geophys. Res., 112, D13302. doi:10.1029/2007JD008408.   DOI
54 Wonaschütz, A., S.P. Hersey, A. Sorooshian, J.S. Craven, A.R. Metcalf, R.C. Flagan, and J.H. Seinfeld (2011) Impact of a large wildfire on water-soluble organic aerosol in a major urban setting: the 2009 station fire in Los Angeles County, Atmos. Chem. Phys., 11, 8257-8270.   DOI
55 Yu, G.H., S.Y. Cho, M.S. Bae, and S.S. Park (2014) Difference in production routes of water-soluble organic carbon in PM2.5 observed during non-biomass and biomass burning periods in Gwangju, Korea, Environ. Sci.: Processes Impacts, 16, 1726-1736.   DOI
56 Yu, J. (2002) Chemical characterization of water soluble organic compounds in particulate matters in Hong Kong. Final report for the Provision of Service to the Environmental Protection Department, HKSAR (Tender Ref. AS01-018), Hong Kong.
57 Yu, J.Z., H. Yang, H. Zhang, and A.K.H. Lau (2004) Size distributions of water-soluble organic carbon in ambient aerosols and its size-resolved thermal characteristics, Atmos. Environ., 38, 1061-1071.   DOI   ScienceOn
58 Yu, J.Z., S.F. Huang, J.H. Xu, and M. Hu (2005) When aerosol sulfate goes up, so does oxalate: implication for the formation mechanisms of oxalate, Environ. Sci. Technol., 39, 128-133.   DOI   ScienceOn