• Title/Summary/Keyword: Atmospheric $CO_2$

Search Result 979, Processing Time 0.027 seconds

Degradation of Lead-based Pigments by Atmospheric Environment (납계열 안료의 대기환경에 따른 열화특성)

  • Park, Ju Hyun;Lee, Sun Myung;Kim, Myoung Nam
    • Economic and Environmental Geology
    • /
    • v.55 no.3
    • /
    • pp.281-293
    • /
    • 2022
  • We examined degradation characteristics of lead based pigments(white lead, Red lead, Litharge) according to atmospheric environmet condition, for example atmospheric gas(CO2, NO2) and soluble salt. Painted samples not changed material compositions but were occured the color change(𝚫E 4~31) after exposed UV irradiation. All sample were not affected by CO2 gas not only color but chemical composition. However, samples were remakably changed color exposed NO2 gas and it was formed secondary product like as lead nitrate. Such as red lead and white lead samples' color difference were 𝚫E 2 and 𝚫 10 respectively and became dark, along with litharge became bright and color difference was 𝚫E 5 after react with NO2 gas. It confirm that NO2 was influential factor than CO2 in the case of same concentration. Furthermore salt spray test was taken to figure out soluble salt influence in fine dust. The result showed noticeable color change and secondary product was formed on samples' surface. The glue film peeled off or hole, and color changed around the secondary products. After salt spray, XRD pattern showed decrease peak intensity and lower crystalinity. As a result of salt spray test, white lead was formed new product litharge and litharge was formed litharge and minium. According to the results, influential atmospheric factors for conservation of paint pigments were UV, NO2, soluble salt, and litharge was most weakness throughout lead base pigments.

A Preliminary Flux Study for CO2 and Biogenic VOCs in a Forest (산림지역 이산화탄소 및 자연적휘발성유기화합물의 교환량 관측기법 기초연구)

  • Kim, So-Young;Kim, Su-Yeon;Choi, Soon-Ho;Kim, Sae-Wung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.5
    • /
    • pp.485-494
    • /
    • 2012
  • The purpose of this study is to monitor the flux of $CO_2$ and BVOCs (biogenic volatile organic compounds) between the atmosphere and forest. The main research activities are conducted at Taehwa Research Forest (TRF), managed by the College of Agriculture and Life Sciences at Seoul National University. The TRF site is located 60 km north-east from the center of Seoul Metropolitan Area. The TRF flux tower is in the middle of a Korean Pine (Pinus Koraiensis) plantation ($400m{\times}400m$), surrounded by a mixed forest. Eddy covariance method was used for $CO_2$ flux above the forest and REA (Relaxed eddy accumulation) method applying eddy covariance was used for BVOCs flux. BVOCs flux that was measured in spring (from May 16 to 18) had distribution of 84 to $2917{\mu}g/m^2{\cdot}h$. Especially, it showed that d-limonene being strong reactivity composed the largest fraction of monoterpene. Ambient $CO_2$ concentration measured in Mt. Taehwa was 399 ppm and observed $CO_2$ fluxes between the atmosphere and forest suggested that during the day, $CO_2$ is absorbed by plants through photosynthesis and released during the night.

Implication of the Change in Overturning Circulation to the LGM CO2 Budget

  • Kim, Seong-Joong;Lee, Bang-Yong;Yoon, Ho-Il;Kim, Yea-Dong
    • Ocean and Polar Research
    • /
    • v.26 no.3
    • /
    • pp.501-506
    • /
    • 2004
  • The observational proxy estimates suggest that the North Atlantic overturning stream function associated with the North Atlantic Deep Water (NADW) production and outflow was substantially weaker during the last glacial maximum (LGM) than that observed under present conditions. The impact of the changes in overturning circulation on the glacial carbon budget is investigated using a box model. The carbon box model reveals that the atmospheric $CO_2$ concentration is more sensitive to change in the overturning circulation of the North Atlantic than that of the Southern Ocean, especially when North Atlantic overturning becomes weaker. For example, when the strength of the North Atlantic overturning circulation is halved, the atmospheric $CO_2$ concentration is reduced by 50ppm of that associated with the accumulation of $CO_2$ in the deep ocean. This result implies that a weaker North Atlantic overturning circulation may play an important role in the lowering of LGM atmospheric $CO_2$ concentration.

Analysis of CO/CO2 Ratio Variability According to the Origin of Greenhouse Gas at Anmyeon-do (안면도 지역 온실기체 기원에 따른 CO/CO2 비율 변동성 분석 연구)

  • Kim, Jaemin;Lee, Haeyoung;Kim, Sumin;Chung, Chu-Yong;Kim, Yeon-Hee;Lee, Greem;Choi, Kyung Bae;Lee, Yun Gon
    • Atmosphere
    • /
    • v.31 no.5
    • /
    • pp.625-635
    • /
    • 2021
  • South Korea established the 2050 Carbon Neutral Plan in response to the climate crisis, and to achieve this policy, it is very important to monitor domestic carbon emissions and atmospheric carbon concentration. Both CO2 and CO are emitted from fossil fuel combustion processes, but the relative ratios depend on the combustion efficiency and the strength of local emission regulations. In this study, the relationship between CO2 and CO was analyzed using ground observation data for the period of 2018~2020 at Anmyeon-do site and the CO/CO2 ratio according to regional origin during high CO2 cases was investigated based on the footprint simulated from Stochastic Time-Inverted Lagrangian Transport (STILT) model. CO2 and CO showed a positive correlation with correlation coefficient of 0.66 (p < 0.01), and averaged footprints during high CO2 cases confirmed that air particles mainly originated from eastern and north-eastern China, and inland of Korean Peninsula. In addition, it was revealed that among the cases of high CO2 concentration, when the CO/CO2 ratio is high, the industrial area of eastern China is greatly affected, and when the ratio is low, the contribution of the domestic region is relatively high. The ratio of CO2 and CO in this study is significant in that it can be used as a useful factor in determining the possibility of domestic and foreign origins of climate pollutants.

Precipitation Change in Korea due to Atmospheric $CO_2$ Increase (대기중 $CO_2$ 증가에 따른 한반도 강수량 변화)

  • 오재호;홍성길
    • Water for future
    • /
    • v.28 no.3
    • /
    • pp.143-157
    • /
    • 1995
  • A precipitation change in Korea due to atmospheric $CO_2$ doubling has been estimated with a mixed method(Robinson and Finkelstein, 1991) to represent regional precipitation distribution from the simulated precipitation data by three GCM(general circulation model) (CCC, UI, and GFDL GCM) experiments. As a result of this analysis, the precipitation change by atmospheric $CO_2$ doubling can be summarized as follows: The precipitation increases as much as 25mm/yr during spring season and more than 50mm/yr during summer and autumn. However, it decreases as much as 13mm/yr during winter. In terms of percentage with respect to current precipitation climatology, we may have more rain as much as 10%, 13% and 24%, respectively, for spring, summer and autumn than current precipitation. However, we may have less winter precipitation than current climatological average.

  • PDF

The Effects of Elevated Atmoshpheric CO2 on Chemical Weathering of Forest Soils (대기 중 이산화탄소의 증가가 산림 토양의 화학적 풍화작용에 미치는 영향)

  • Oh, Neung-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.3
    • /
    • pp.169-180
    • /
    • 2014
  • Chemical weathering of forest soils can reduce atmospheric $CO_2$ concentration over geologic time scales, providing many essential elements for life. Although many studies have been conducted on the effects of elevated atmospheric $CO_2$ on forest carbon storage using open top chambers and FACE (Free air $CO_2$ enrichment) facilities since the 1990s, studies on chemical weathering of forest soils under elevated $CO_2$ are relatively rare. Here I review on how elevated atmospheric $CO_2$ can affect the chemical weathering of forest soils and suggest directions on future research. Despite the recent advances in chemical weathering of forest soils under elevated atmospheric $CO_2$, it is still not clear how the large volume of forest soils would react under the condition. Future studies on weathering of forest soils covering large areas from the tropics to the polar regions with carefully monitored pre-treatment data would provide key information on how soils, the Earth's life sustaining engine, change under climate change.

The Influences of Sea Breeze on Air Pollution Concentration in Pusan, Korea (해풍이 부산 지역의 대기 오염 농도에 미치는 영향)

  • Jeon, Byeong-Il;Kim, Yu-Geun;Lee, Hwa-Un
    • Journal of Environmental Science International
    • /
    • v.3 no.4
    • /
    • pp.357-365
    • /
    • 1994
  • Air pollution characteristics and the influence of sea breeze on air pollution concentration were studied using the data measured at 7 air quality continuous monitoring stations in Pusan, 1993. Maximum air pollution concentration in Pusan was Gamjeondong for $SO_2$, Sinpyeongdong for TSP, Daeyeondong for $O_3, Kwangbokdong for $NO_2$, Beomcheondong for CO and all substances were under annual ambient air quality standards. Increased rate of concentration for sea breeze was 24.4% for 502, 31.5% for TSP, 8.0% fort $O_3, 26.7% for $NO_2$, 15.7% for CO. Frequencies distribution of $SO_2$, TSP, $O_3$, $NO_2$, and CO concentration for sea breeze moved toward high concentration class.

  • PDF

Development and Evaluation of a Carbon Dioxide Diffusive Sampling Method using Barium Hydroxide (수산화바륨을 이용한 이산화탄소 확산측정법의 개발 및 평가)

  • Yim, Bongbeen
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.1
    • /
    • pp.56-63
    • /
    • 2013
  • This study was aimed at developing and evaluating a diffusive sampling method using a barium hydroxide solution as an absorbent for measuring carbon dioxide ($CO_2$) in ambient air. The collected $CO_2$ concentration was calculated by the change of conductivity resulted in the reaction of $CO_3{^{2-}}$ and $Ba^{2+}$ in aqueous solution. The sampling rate for the diffusive sampler was determined 0.218 mL/min, as obtained from the slope of the linear correlation between the $CO_2$ mass collected by the diffusive sampler and the time-weighted $CO_2$ concentration with the active sampling method. The unexposed blank sampler sealed in aluminium foil-polyethylene laminated packets has remained stable during at least one-month storage period. A good correlation was observed between the diffusive sampler and active sampler with a coefficient of determination of 0.956. This diffusive sampler would be suitable for the indoor $CO_2$ concentration monitoring.

Trade Openness and CO2 Emissions: Evidence of Bangladesh

  • Oh, Keun-Yeob;Bhuyan, Md Iqbal
    • Asian Journal of Atmospheric Environment
    • /
    • v.12 no.1
    • /
    • pp.30-36
    • /
    • 2018
  • This study investigates the relationship between economic growth, energy consumption, trade openness, population density, and carbon dioxide ($CO_2$) emissions in Bangladesh for the period of 1975 to 2013. It applies the Autoregressive Distributed Lag (ARDL) bounds testing approach to cointegration for establishing the existence of a long-run relationship. The bounds tests suggest that the variables of interest are bound together in the long-run when $CO_2$ emissions is the dependent variable. The results indicate that energy consumption has statistically significant positive effect on $CO_2$ emissions both in the short-run and long-run. The effect of population density is significant in long-run, but not in short-run. The estimated coefficients for economic growth and trade liberalization are negative and insignificant both in short-run and long-run. The paper suggests that the government of Bangladesh should undertake the policy actions to develop alternative energy sources which would not emit much $CO_2$.

Surface Exchange of Energy and Carbon Dioxide between the Atmosphere and a Farmland in Haenam, Korea (한국 해남 농경지와 대기간의 에너지와 이산화탄소의 지표 교환)

  • Hee Choon Lee;Jinkyu Hong;Chun-Ho Cho;Byoung-Cheol Choi;Sung-Nam Oh;Joon Kim
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.5 no.2
    • /
    • pp.61-69
    • /
    • 2003
  • Surface energy and $CO_2$ fluxes have been measured over a farmland in Haenam, Korea since July 2002. Eddy covariance technique, which is the only direct flux measurement method, was employed to quantitatively understand the interaction between the farmland ecosystem and the atmospheric boundary layer. Maintenance of eddy covariance system was the main concern during the early stage of measurement to minimize gaps and uncertainties in the dataset. Half-hourly averaged $CO_2$ concentration showed distinct diurnal and seasonal variations, which were closely related to changes in net ecosystem exchange (NEE) of $CO_2$. Daytime maximum $CO_2$ uptake was about -1.0 mg $CO_2$ m$^{-2}$ s$^{-1}$ in August whereas nighttime $CO_2$ release was up to 0.3 mg $CO_2$ m$^{-2}$ s$^{-1}$ during the summer. Both daytime $CO_2$ uptake and nighttime release decreased gradually with season. During the winter season, NEE was from near zero to 0.05 mg $CO_2$ m$^{-2}$ s$^{-1}$ . FK site was a moderate sink of atmospheric $CO_2$ until September with daily NEE of 22 g $CO_2$ m$^{-2}$ d$^{-1}$ . In October, it became a weak source of $CO_2$ with an emission rate of 2 g $CO_2$ m$^{-2}$ d$^{-1}$ . Long-term flux measurements will continue at FK site to further investigate inter-annual variability in NEE. to better understand these exchange mechanism and in-depth analysis, process-level field experiments and intensive short-term intercomparisons are also expected to be followed.