Browse > Article
http://dx.doi.org/10.9719/EEG.2022.55.3.281

Degradation of Lead-based Pigments by Atmospheric Environment  

Park, Ju Hyun (National Research Institute of Cultural Heritage, Restoration Technology Division)
Lee, Sun Myung (National Research Institute of Cultural Heritage, Restoration Technology Division)
Kim, Myoung Nam (National Research Institute of Cultural Heritage, Restoration Technology Division)
Publication Information
Economic and Environmental Geology / v.55, no.3, 2022 , pp. 281-293 More about this Journal
Abstract
We examined degradation characteristics of lead based pigments(white lead, Red lead, Litharge) according to atmospheric environmet condition, for example atmospheric gas(CO2, NO2) and soluble salt. Painted samples not changed material compositions but were occured the color change(𝚫E 4~31) after exposed UV irradiation. All sample were not affected by CO2 gas not only color but chemical composition. However, samples were remakably changed color exposed NO2 gas and it was formed secondary product like as lead nitrate. Such as red lead and white lead samples' color difference were 𝚫E 2 and 𝚫 10 respectively and became dark, along with litharge became bright and color difference was 𝚫E 5 after react with NO2 gas. It confirm that NO2 was influential factor than CO2 in the case of same concentration. Furthermore salt spray test was taken to figure out soluble salt influence in fine dust. The result showed noticeable color change and secondary product was formed on samples' surface. The glue film peeled off or hole, and color changed around the secondary products. After salt spray, XRD pattern showed decrease peak intensity and lower crystalinity. As a result of salt spray test, white lead was formed new product litharge and litharge was formed litharge and minium. According to the results, influential atmospheric factors for conservation of paint pigments were UV, NO2, soluble salt, and litharge was most weakness throughout lead base pigments.
Keywords
lead based pigments; atmospheric environment; UV; atmospheric gas($CO_2$, $NO_2$); soluble salt;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Brooker, M.H., Irish, D.E. and Boyd, G.E. (1970) Ionic interactions in crystals:infrared and Raman spectra of powdered Ca(NO3)2, Sr(NO3)2, Ba(NO3)2 and Pb(NO3)2. The Journal of Chemical Physics, v.53, p.1083-1087.   DOI
2 Gonsalez, V., Wallez, G., Calligaro, T., Gourier, D. and Menu, M. (2019) Synthesizing lead white pigments by lead corrosion:new insights into the ancient manufacturing processes. Corrosion Science, v.146, p.10-17. doi: 10.1016/j.corsci.2018.10.033   DOI
3 Jeong, J.M. (2001) The color nad paint of the korean painting. Hakgojae, Seoul, p.52.
4 Tapsoba, I., Arbault, S., Walter, P. and Amatore, C. (2010) Finding out Egytian God's secret using analytical chemistry: Biomedical properties of Egytian black makeup revealed by Amperometry at single cells. Letters to Analytical Chemistry, v.82, p.457-460. doi: 10.1021/ac902348g   DOI
5 Kim, M. (2013) Discoloration of lead red by the environmental influence, Master thesis, Yongin University, p.42-49. (in Kerean with English abstract)
6 Aze, S., Vallet, J.M., Detalle, V., Grauby, O. and Baronnet, A. (2008) Chromatic of red lead pigments in artworks: a review. Phase Transition, v.81, p.145-154. doi: 10.1080/01411590701514326   DOI
7 Eastaugh, N., Walsh, V., Chaplin, T. and Siddall, R. (2004) Pigment compendium:a dictionary of historical pigments. p.229, p.233, p.241 p.256.
8 Gliozzo, E. and Ionescu, C. (2022) Pigments-lead based white, reds, yellows and oranged and their alteration phases. Archaeological and Anthropological Sciences, v.14, p.1-66. doi: 10.1007/s12520-021-01407-z   DOI
9 Hwang, I.S. (2004) Discoloration of lead containing pigments in paintings(II). The 20th International Conference of the Korean Society of Conservation Science for Cultural Heritage, Seoul, p.72-74.
10 Jang, S.W., Park, Y.S., Park, D.W. and Kim, J.K. (2010) A study on Dancheong pigment of old wooden building in Gwangju and Jeonnam, Korea. Economic and Environmental Geology, v.43(3), p.269-278.
11 Kotulanova, E., Bezdicka, P., Hradil, D., Hradilova, J., Svarcova, S. and Grygar, T. (2009), Degradation of lead-based pigments by salt solutions. Journal of Cultural Heritage, v.10, p.367-378. doi: 10.1016/j.culher.2008.11.001   DOI
12 She, Z., Yang M., Luo, T., Feng, X., Wei, J. and Hu, X. (2021) Lead release and species transfortation of commercial minium pigments in aqueous phase under UV-irradiation. Chemosphere, v.269, p.1-9. doi: 10.1016/j.chemosphere.2020.128769   DOI
13 Lee, E.W., Yoon, J.H., Kwon, Y.M. and Shin, T.H. (2020) Interpretation of Coloring Materials Recorded in Ceremonial Writing of the Hanging Painting of Chiljangsa Temple (Five Buddhas). Journal of Conservation Science, v.36(6), p.519-532. doi: 10.12654/JCS.2020.36.6.08   DOI
14 Lee, J.J., Gyeong, Y.J., Lee, J.S. and Seo, M.S., (2019) Scientific Analysis of the Historical Characteristics and Painting Pigments of Gwaebultaeng in Boeun Beopjusa Temple. MUNHWAJAE Korean Journal of Cultural Heritage Studies, v.52(4), p.226-245. doi: 10.22755/kjchs.2019.52.4.226   DOI
15 Lee, Y.J., Kim, J.W., Han, M.S. and Kang, D.I. (2018) Effect to the discoloration of lead based pigments by the factors of air environment. Journal of Conservation Science, v.34, n.2, p.69-76. (in Kerean) doi: 10.12654/JCS.2018.34.2.01   DOI
16 Minch, R. and Dubrovinsky, L. (2010) Raman spectroscopic study of PbCO3 at high pressures and temperatures. Physics and Chemistry of Minerals, v.37, p.45-56. doi: 10.1007%2Fs00269-009-0308-0   DOI
17 Prathap, K., Venkateshwar Rao, E., Kumar, P.M. and Hussain, K.A. (2020) FT-IR spectra analysis of PbxSr1-x(NO3)2 mixed crystala for optoelectronic applications. Macromolecular Symposia. doi: 10.1002/masy.202000189   DOI
18 Song, Y.N. and Kim, G.H. (2014) A Consideration of Pigments name on Ceremonial writing of Youngsan Ritual Ceremony Buddhist Painting, BongJeongsa. Journal of Conservation Science, v.30(1), p.13-25. doi: 10.12654/JCS.2014.30.1.02   DOI
19 Yun, E.Y and Chang, Y.H. (2016) Analysis of Pigment on Portraits of Sim Hui-su in Joseon Period. Journal of Conservation Science, v.32(4), p.571-578. doi: 10.12654/JCS.2016.32.4.11   DOI
20 Zhao, Y., Tang, Y., Tong, T., Sun, Z., Yu, Z., Zhu, Y. and Tong, Hua. (2016) Red lead degradation:monitoring of color ahange over time. New Journal of chemistry, v.40, p.3686-3692.   DOI
21 Vagnini, M., Vivani, R., Sgamellotti, A. and Miliani, C. (2020) Blackening of lead white_study of model paintings. Journal of Raman Spectroscopy, v.51, p.1118-1126. doi: 10.1002/jrs.5879   DOI
22 Zhao, Y., Wang, J. Pan, A., He, L. and Simon, S. (2019) Degradation of red lead pigment in the oil painting during UV aging. Color research and application, v.44, no.5, p.790-797. doi: 10.1002/col.22386   DOI
23 Kim. J.S., Jeong, H.Y., Byun, D.J., Yoo, M.J., Kim, M.N. and Lee, S.M. (2020) Monitoring the change of physical properties of traditional dancheong pigments. Journal of Conservation Science, v.36, n.6, p.549-561. (in Kerean) doi: 10.12654/JCS.2020.36.6.11   DOI
24 Lee, K.M., Lee, H.W. and Kim, M.J. (2012) Analysis and Investigation of Materials and Condition for Buddhist Wall Painting - Focusing on Wall paintings of Judgement Hall in Jikji Temple -. Journal of Buddhist Art, v.14, p.181-205.