• Title/Summary/Keyword: Asymptotically Stable

Search Result 142, Processing Time 0.027 seconds

Delay-dependent Guaranteed Cost Control for Uncertain Time Delay System

  • Lee, In-Beum;Choi, Jin-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.62.4-62
    • /
    • 2001
  • In this paper, we propose a delay-dependent guaranteed cost controller design method for uncertain linear systems with time delay. The uncertainty is norm bounded and time-varying. A quadratic cost function is considered as the performance measure for the given system. Based on the Lyapunov method, sufficient condition, which guarantees that the closed-loop system is asymptotically stable and the upper bound value of the closed-loop cost function is not more than a specied one, is derived in terms of Linear Matrix Inequalities(LMIs) that can be solved sufficiently. A convex optimization problem can be formulated to design a guaranteed cost controller, which minimizes the upper bound value of the cost function. Numerical examples show the activeness of the proposed method.

  • PDF

Multirate LQG Control Based on the State Expansion (상태 공간 확장에 의한 멀티레이트 LQG 제어)

  • 이진우;오준호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.2
    • /
    • pp.131-138
    • /
    • 1999
  • In discrete-time controlled system, sampling time is one of the critical parameters for control performance. It is useful to employ different sampling rates into the system considering the feasibility of measuring system or actuating system. The systems with the different sampling rates in their input and output channels are named multirate system. Even though the original continuous-time system is time-invariant, it is realized as time-varying state equation depending on multirate sampling mechanism. By means of the augmentation of the inputs and the outputs over one Period, the time-varying system equation can be constructed into the time-invariant equation. In this paper, an alternative time-invariant model is proposed, the design method and the stability of the LQG (Linear Quadratic Gaussian) control scheme for the realization are presented. The realization is flexible to construct to the sampling rate variations, the closed-loop system is shown to be asymptotically stable even in the inter-sampling intervals and it has smaller computation in on-line control loop than the previous time-invariant realizations.

  • PDF

A hyperstable cascade control scheme for chattering reduction in discontinously controlled servo systems (불연속 제어 서보시스템에서의 chattering 저감을 위한 hyperstable cascade control)

  • Yoon, Tae-woong;Choy, Ick;Kim, Kwang-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.154-159
    • /
    • 1988
  • In this paper, a hyperstable cascade control scheme for servo drive systems is proposed to reduce the chattering, which is an undesirable property in discontinuously controlled systems. First, a discontinuously controlled hyperstable MRAC scheme is designed with respect to PI speed control system using only output variables, and then a linear position controller is cascaded. It is shown that the above system is asymptotically stable and the chattering is greatly reduced at a constant speed provided that the disturbance torque satisfies a certain condition.

  • PDF

Generalized Stability Condition for Descriptor Systems (특이시스템의 일반적 안정화)

  • Oh, Do-Chang;Lee, Dong-Gi;Kim, Jong-Hae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.6
    • /
    • pp.513-518
    • /
    • 2012
  • In this paper, we propose a generalized index independent stability condition for a descriptor systemwithout any transformations of system matrices. First, the generalized Lyapunov equation with a specific right-handed matrix form is considered. Furthermore, the existence theorem and the necessary and sufficient conditions for asymptotically stable descriptor systems are presented. Finally, some suitable examples are used to show the validity of the proposed method.

A method of nonlinear optimal regulator using a Liapunov-like function

  • Kawabata, Hiroaki;Shirao, Yoshiaki;Nagahara, Toshikuni;Inagaki, Yoshio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1060-1065
    • /
    • 1990
  • In general it is difficult to determine a Liapunov function for a given asymptotically stable, nonlinear differential equations system. But, in the system with control inputs, it is feasible to make a given positive function, except for a small area, globally satisfy the conditions of the Liapunov function for the system. We call such a positive function a Liapunov-like function, and propose a method of nonlinear optimal regulator using this Liapunov-like function. We also use the periodic Liapuitov-like friction that suits the system whose equilibrium points exist periodically. The relationship between the Liapunov function and cost function which this nonlinear regulator minimizes is considered using inverse optimal method.

  • PDF

Sliding Mode Control for Robust Stabilization of Uncertain Input-Delay Systems

  • Roh, Young-Hoon;Oh, Jun-Ho
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.2
    • /
    • pp.98-103
    • /
    • 2000
  • This paper is concerned with a delay-dependent sliding mode scheme for the robust stabilization of input-delay systems with bounded unknown uncertainties. A sliding surface based ona predictor is proposed to minimize the effect of the input delay. Then, a robust control law is derived to ensure the existence of a sliding mode on the surface. In input-delay systems, uncertainties given during te delayed time are not directly controlled by the switching control because of causality prolem of them. They can influence the stability of the system in the sliding mode. Hence, a delay-dependent stability analysis for reduced order dynamics is employed to estimate maximum delay bound such that the system is globally asymptotically stable in the sliding mode. A numerical example is given to illustrate the design procedure.

  • PDF

A Delay-Dependent Approach to Robust Filtering for LPV Systems with Discrete and Distributed Delays using PPDQ Functions

  • Karimi Hamid Reza;Lohmann Boris;Buskens Christof
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.2
    • /
    • pp.170-183
    • /
    • 2007
  • This paper presents a delay-dependent approach to robust filtering for linear parameter-varying (LPV) systems with discrete and distributed time-invariant delays in the states and outputs. It is assumed that the state-space matrices affinely depend on parameters that are measurable in real-time. Some new parameter-dependent delay-dependent stability conditions are established in terms of linear matrix inequalities (LMIs) such that the filtering process remains asymptotically stable and satisfies a prescribed $H_{\infty}$ performance level. Using polynomially parameter-dependent quadratic (PPDQ) functions and some Lagrange multiplier matrices, we establish the parameter-independent delay-dependent conditions with high precision under which the desired robust $H_{\infty}$ filters exist and derive the explicit expression of these filters. A numerical example is provided to demonstrate the validity of the proposed design approach.

T-S Fuzzy Tracking Control of Surface-Mounted Permanent Magnet Synchronous Motors with a Rotor Acceleration Observer

  • Jung, Jin-Woo;Choi, Han-Ho;Kim, Tae-Heoung
    • Journal of Power Electronics
    • /
    • v.12 no.2
    • /
    • pp.294-304
    • /
    • 2012
  • This paper proposes a fuzzy speed tracking controller and a fuzzy rotor angular acceleration observer for a surface-mounted permanent magnet synchronous motor (SPMSM) based on the Takagi-Sugeno (T-S) fuzzy model. The proposed observer-based controller is robust to load torque variations since it utilizes rotor angular acceleration information instead of the load torque value. Linear matrix inequality (LMI) sufficient conditions are given to compute the gain matrices of the speed tracking controller and the observer. In addition, it is mathematically verified that the proposed observer-based control system is asymptotically stable. Simulation and experimental results are presented to confirm that the proposed control algorithm assures a better transient behavior and less sensitivity under model parameter variations than the conventional PI control method.

Indirect Adaptive Fuzzy Sliding Mode Control for Nonaffine Nonlinear Systems

  • Seo, Sam-Jun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.2
    • /
    • pp.145-150
    • /
    • 2005
  • We proposed the indirect adaptive fuzzy model based sliding mode controller to control nonaffine nonlinear systems. Takagi-Sugano fuzzy system is used to represent the nonaffine nonlinear system and then inverted to design the controller at each sampling time. Also sliding mode component is employed to eliminate the effects of disturbances, while a fuzzy model component equipped with an adaptation mechanism reduces modeling uncertainties by approximating model uncertainties. The proposed controller and adaptive laws guarantee that the closed-loop system is stable in the sense of Lyapunov and the output tracks a desired trajectory asymptotically.

Design of an Adaptive Fuzzy Logic Controller using Sliding Mode Scheme

  • Kwak, Seong-Woo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.6
    • /
    • pp.577-582
    • /
    • 1999
  • Using a sole input variable simplifies the design process for the fuzzy logic controller(FLC). This is called single-input fuzzy logic controller(SFLC). However it is still deficient in the capability of adapting to the varying operating conditions. We here design a single-input adaptive fuzzy logic controller(AFLC) using a switching function of the sliding mode control. The AFLC can directly incorporate linguistic fuzzy control rules into the controller. Hence some parameters of the membership functions characterizing the linguistic terms of the fuzzy rules can be adjusted by an adaptive law. In the proposed AFLC center values of fuzzy sets are directly adjusted by a fuzzy logic system. We prove that 1) its closed-loop system is globally stable in the sense that all signals involved are bounded and 2)its tracking error converges to zero asymptotically. We perform computer simulation using a nonlinear plant.

  • PDF