DOI QR코드

DOI QR Code

Generalized Stability Condition for Descriptor Systems

특이시스템의 일반적 안정화

  • 오도창 (건양대학교 전자정보공학과) ;
  • 이동기 (건양대학교 전자정보공학과) ;
  • 김종해 (선문대학교 전자공학과)
  • Received : 2012.01.15
  • Accepted : 2012.05.12
  • Published : 2012.06.01

Abstract

In this paper, we propose a generalized index independent stability condition for a descriptor systemwithout any transformations of system matrices. First, the generalized Lyapunov equation with a specific right-handed matrix form is considered. Furthermore, the existence theorem and the necessary and sufficient conditions for asymptotically stable descriptor systems are presented. Finally, some suitable examples are used to show the validity of the proposed method.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. T. Stykel, "Analysis and numerical solution of generalized Lyapunov equations," Ph.D. Thesis, Institutfür Mathematik, Technische Universität Berlin, Germany, 2002.
  2. B. C. Moore, "Principal component analysis in linear systems: controllability, observability, and model reduction," IEEE Transactions on Automatic Control, vol. 26, pp. 17-32, 1981. https://doi.org/10.1109/TAC.1981.1102568
  3. D. C. Oh and D. G. Lee, "Stability analysis of descriptor system using generalized Lyapunov equation," Journal of IEEK, vol. 46SC, no. 4, pp. 49-62, 2009.
  4. K. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal Control, Prentice Hall, Upper Saddle River, NJ, 1996.
  5. W. Q. Liu and V. Sreeram, "Model reduction of singular systems," Proc. of the 39th IEEE Conference on Decision and Control, pp. 2373-2378, Sydney, Australia, 2000.
  6. D. J. Bender, "Lyapunov-like equations and reachability/observability Gramians for descriptor systems," IEEE Transactions on Automatic Control, vol. 32, pp. 343-348, 1987. https://doi.org/10.1109/TAC.1987.1104589
  7. J. Y. Ishihara and M. H. Terra, "On the Lyapunov theorem for singular systems," IEEE Transactions on Automatic Control, vol. 47, no. 11, pp. 1926-1930, 2002. https://doi.org/10.1109/TAC.2002.804463
  8. I. Masubuchi, Y. Kamitane, A. Ohara, and N. Suda, "$H{\infty}$ control for descriptor systems: a matrix inequalities approach," Automatica, vol. 33, no. 4, pp. 669-673, 1997. https://doi.org/10.1016/S0005-1098(96)00193-8
  9. E. L. Yip and R. F. Sincovec, "Sovability, controllability and observability of continuous descriptor systems," IEEE Transactions on Automatic Control, vol. 26, pp. 702-707, 1981. https://doi.org/10.1109/TAC.1981.1102699
  10. K. E. Brenan, S. L. Campbell, and L. R. Petzold, The Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, Elsevier, North-Holland, NewYork, 1989.
  11. P. J. Rabier and W. C. Rheinboldt, Nonholonomic Motion of Rigid Mechanical Systems from a DAE viewpoint, SIAM, Philadelphia, PA, 2000.
  12. L. Dai, Singular Control Systems, Lecture Notes in Control and Information Sciences, 118, Springer-Verlag, Berlin, Heidelberg, 1989.
  13. T. Penzl, "Numerical solution of generalized Lyapunovequations," Adv. Comput.Math., vol. 8, pp. 33-48, 1998. https://doi.org/10.1023/A:1018979826766
  14. F. L. Lewis, "A tutorial on the geometric analysis of linear timeinvariant implicit systems," Automatica, vol. 28, pp. 119-137, 1992. https://doi.org/10.1016/0005-1098(92)90012-5
  15. K. Takaba, N. Morihira, and T. Katayama, "A generalized Lyapunov theorem for descriptor system," Systems Control Lett., vol. 24, pp. 49-51, 1995. https://doi.org/10.1016/0167-6911(94)00041-S
  16. T. Stykel, "Solving projected generalized Lyapunov equations using SILICOT," IEEE International Symposium on Computer Aided Control System Design, Munich, Germany, 2006.
  17. L. Zhang, J. Lam, and Q. Zhang, "Lyapunov and Riccati equations for discrete-time descriptor systems," IEEE Trans. Automat.Control, vol. 44, no. 11, pp. 2134-2139, 1999. https://doi.org/10.1109/9.802931
  18. A. Varga, "A descriptor systems toolbox for MATLAB," Proc. of the 2000 IEEE International Symposium on Computer Aided Control System Design, Anchorage, Alaska, pp. 25-27, Sep. 2000.
  19. G. W. Stewart and J. G. Sun, Matrix Perturbation Theory, Academic Press, New York, 1990.
  20. K. E. Chu, "The solution of the matrix equations AXB - CXD = E and (YA-DZ, YC-BZ) = (E, F)," Linear Algebra Appl., vol. 93, pp. 93-105, 1987. https://doi.org/10.1016/S0024-3795(87)90314-4
  21. S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia, PA, 1994.

Cited by

  1. Response Time Optimization of DVR for 3-Phase Phase-Controlled Rectifier vol.19, pp.3, 2013, https://doi.org/10.5302/J.ICROS.2013.12.1835