Acknowledgement
Supported by : National Research Foundation of Korea (NRF)
References
- T. Stykel, "Analysis and numerical solution of generalized Lyapunov equations," Ph.D. Thesis, Institutfür Mathematik, Technische Universität Berlin, Germany, 2002.
- B. C. Moore, "Principal component analysis in linear systems: controllability, observability, and model reduction," IEEE Transactions on Automatic Control, vol. 26, pp. 17-32, 1981. https://doi.org/10.1109/TAC.1981.1102568
- D. C. Oh and D. G. Lee, "Stability analysis of descriptor system using generalized Lyapunov equation," Journal of IEEK, vol. 46SC, no. 4, pp. 49-62, 2009.
- K. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal Control, Prentice Hall, Upper Saddle River, NJ, 1996.
- W. Q. Liu and V. Sreeram, "Model reduction of singular systems," Proc. of the 39th IEEE Conference on Decision and Control, pp. 2373-2378, Sydney, Australia, 2000.
- D. J. Bender, "Lyapunov-like equations and reachability/observability Gramians for descriptor systems," IEEE Transactions on Automatic Control, vol. 32, pp. 343-348, 1987. https://doi.org/10.1109/TAC.1987.1104589
- J. Y. Ishihara and M. H. Terra, "On the Lyapunov theorem for singular systems," IEEE Transactions on Automatic Control, vol. 47, no. 11, pp. 1926-1930, 2002. https://doi.org/10.1109/TAC.2002.804463
-
I. Masubuchi, Y. Kamitane, A. Ohara, and N. Suda, "
$H{\infty}$ control for descriptor systems: a matrix inequalities approach," Automatica, vol. 33, no. 4, pp. 669-673, 1997. https://doi.org/10.1016/S0005-1098(96)00193-8 - E. L. Yip and R. F. Sincovec, "Sovability, controllability and observability of continuous descriptor systems," IEEE Transactions on Automatic Control, vol. 26, pp. 702-707, 1981. https://doi.org/10.1109/TAC.1981.1102699
- K. E. Brenan, S. L. Campbell, and L. R. Petzold, The Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, Elsevier, North-Holland, NewYork, 1989.
- P. J. Rabier and W. C. Rheinboldt, Nonholonomic Motion of Rigid Mechanical Systems from a DAE viewpoint, SIAM, Philadelphia, PA, 2000.
- L. Dai, Singular Control Systems, Lecture Notes in Control and Information Sciences, 118, Springer-Verlag, Berlin, Heidelberg, 1989.
- T. Penzl, "Numerical solution of generalized Lyapunovequations," Adv. Comput.Math., vol. 8, pp. 33-48, 1998. https://doi.org/10.1023/A:1018979826766
- F. L. Lewis, "A tutorial on the geometric analysis of linear timeinvariant implicit systems," Automatica, vol. 28, pp. 119-137, 1992. https://doi.org/10.1016/0005-1098(92)90012-5
- K. Takaba, N. Morihira, and T. Katayama, "A generalized Lyapunov theorem for descriptor system," Systems Control Lett., vol. 24, pp. 49-51, 1995. https://doi.org/10.1016/0167-6911(94)00041-S
- T. Stykel, "Solving projected generalized Lyapunov equations using SILICOT," IEEE International Symposium on Computer Aided Control System Design, Munich, Germany, 2006.
- L. Zhang, J. Lam, and Q. Zhang, "Lyapunov and Riccati equations for discrete-time descriptor systems," IEEE Trans. Automat.Control, vol. 44, no. 11, pp. 2134-2139, 1999. https://doi.org/10.1109/9.802931
- A. Varga, "A descriptor systems toolbox for MATLAB," Proc. of the 2000 IEEE International Symposium on Computer Aided Control System Design, Anchorage, Alaska, pp. 25-27, Sep. 2000.
- G. W. Stewart and J. G. Sun, Matrix Perturbation Theory, Academic Press, New York, 1990.
- K. E. Chu, "The solution of the matrix equations AXB - CXD = E and (YA-DZ, YC-BZ) = (E, F)," Linear Algebra Appl., vol. 93, pp. 93-105, 1987. https://doi.org/10.1016/S0024-3795(87)90314-4
- S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia, PA, 1994.
Cited by
- Response Time Optimization of DVR for 3-Phase Phase-Controlled Rectifier vol.19, pp.3, 2013, https://doi.org/10.5302/J.ICROS.2013.12.1835