• Title/Summary/Keyword: Asymptotic solutions

Search Result 202, Processing Time 0.033 seconds

OSCILLATORY BEHAVIOUR OF SOLUTIONS OF y"+P(x)y=f(x)

  • Zaghrout, A.A.S.;Ragab, A.A.
    • Kyungpook Mathematical Journal
    • /
    • v.27 no.1
    • /
    • pp.7-13
    • /
    • 1987
  • This paper is a study of the oscillatory and asymptotic behaviour of solutions of the second order nonhomogeneous linear differential equation y"+P(x)y=f(x), and the associated homogeneous equation. Conditions are determined, under which the nonhomogeneous equation is oscillatory if and only if the homogeneous equation is oscillatory.

  • PDF

ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO 3D CONVECTIVE BRINKMAN-FORCHHEIMER EQUATIONS WITH FINITE DELAYS

  • Le, Thi Thuy
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.3
    • /
    • pp.527-548
    • /
    • 2021
  • In this paper we prove the existence of global weak solutions, the exponential stability of a stationary solution and the existence of a global attractor for the three-dimensional convective Brinkman-Forchheimer equations with finite delay and fast growing nonlinearity in bounded domains with homogeneous Dirichlet boundary conditions.

A STUDY ON SOLUTIONS OF A CLASS OF HIGHER ORDER ORDINARY DIFFERENTIAL EQUATIONS

  • Kim, Yong-Ki
    • The Pure and Applied Mathematics
    • /
    • v.5 no.2
    • /
    • pp.156-162
    • /
    • 1998
  • The main objective of this paper is to study the boundedness of solutions of the differential equation $L_{n} {\chi}+F(t,{\chi}) = f(t), n {\geq} 2 $(*) Necessary and sufficient conditions for boundedness of all solutions of (*) will be obtainded. The asymptotic behavior of solutions of (*) will also be studied.

  • PDF

ASYMPTOTICS FOR SOLUTIONS OF THE GINZBURG-LANDAU EQUATIONS WITH DIRICHLET BOUNDARY CONDITIONS

  • Han, Jong-Min
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.1019-1043
    • /
    • 1998
  • In this paper we study some asymptotics for solutions of the Ginzburg-Landau equations with Dirichlet boundary conditions. We consider the solutions ( $u_{\in}$, $A_{\in}$) which minimize the Ginzburg-Landau energy functional $E_{\in}$(u, A). We show that the solutions ( $u_{\in$}$ , $A_{\in}$) converge to some ( $u_{*}$, $A_{*}$) in various norms as the coupling parameter $\in$longrightarrow0.ow0.

  • PDF

REPRESENTATIONS OF SOLUTIONS TO PERIODIC CONTINUOUS LINEAR SYSTEM AND DISCRETE LINEAR SYSTEM

  • Kim, Dohan;Shin, Jong Son
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.933-942
    • /
    • 2014
  • We give a representation of the component of solutions with characteristic multiplier 1 in a periodic linear inhomogeneous continuous system. It follows from this representation that asymptotic behaviors of the component of solutions to the system and to its associated homogeneous system are quite different, though they are similar in the case where the characteristic multiplier is not 1. Moreover, the representation is applicable to linear discrete systems with constant coefficients.

UNIFORMLY LIPSCHITZ STABILITY AND ASYMPTOTIC PROPERTY IN PERTURBED NONLINEAR DIFFERENTIAL SYSTEMS

  • CHOI, SANG IL;GOO, YOON HOE
    • The Pure and Applied Mathematics
    • /
    • v.23 no.1
    • /
    • pp.1-12
    • /
    • 2016
  • This paper shows that the solutions to the perturbed differential system $y^{\prime}=f(t, y)+\int_{to}^{t}g(s,y(s),Ty(s))ds+h(t,y(t))$ have asymptotic property and uniform Lipschitz stability. To show these properties, we impose conditions on the perturbed part $\int_{to}^{t}g(s,y(s),Ty(s))ds+h(t,y(t))$, and on the fundamental matrix of the unperturbed system y' = f(t, y).

DYNAMICAL BEHAVIOR OF A HARVEST SINGLE SPECIES MODEL ON GROWING HABITAT

  • Ling, Zhi;Zhang, Lai
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.5
    • /
    • pp.1357-1368
    • /
    • 2014
  • This paper is concerned with a reaction-diffusion single species model with harvesting on n-dimensional isotropically growing domain. The model on growing domain is derived and the corresponding comparison principle is proved. The asymptotic behavior of the solution to the problem is obtained by using the method of upper and lower solutions. The results show that the growth of domain takes a positive effect on the asymptotic stability of positive steady state solution while it takes a negative effect on the asymptotic stability of the trivial solution, but the effect of the harvesting rate is opposite. The analytical findings are validated with the numerical simulations.

Random Permutation Test for Comparison of Two Survival Curves

  • Kim, Mi-Kyung;Lee, Jae-Won;Lee, Myung-Hoe
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.1
    • /
    • pp.137-145
    • /
    • 2001
  • There are many situations in which the well-known tests such as log-rank test and Gehan-Wilcoxon test fail to detect the survival differences. Assuming large samples, these tests are developed asymptotically normal properties. Thus, they shall be called asymptotic tests in this paper, Several asymptotic tests sensitive to some specific types of survival differences have been recently proposed. This paper compares by simulations the test levels and the powers of the conventional asymptotic tests and their random permutation versions. Simulation studies show that the random permutation tests possess competitive powers compared to the corresponding asymptotic tests, keeping exact test levels even in the small sample case. It also provides the guidelines for choosing the valid and most powerful test under the given situation.

  • PDF