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ASYMPTOTIC BEHAVIOR OF SOLUTIONS
OF NONLINEAR FUNCTIONAL
DIFFERENTIAL EQUATIONS II

JONG S00 JUNG* AND JONG YEOUL PARK

1. Introduction

Let H be a real Hilbert space. We consider the initial value problem

(E) WY 4 4t + GO £, 0<t<om,
u(0) = 1,

where A is a maximal monotone (possibly multivalued) operator de-

fined on a subset D(A) contained in H, = € D(4), f € L}, ({0,00) : H)
and G is a given mapping

(1.1) G : C([0,7] : D(A)) — L*([0,T) : H), for all T > 0.

Problems of the type (E) have been considered by many authors
(see [7, 13, 14, 15}). Crandall and Nohel {7] obtained the existence
result of solutions of (E) in connection with the study of a related
nonlinear Volterra equation. Recently, Aizicovici {1] investigated nice
asymptotic results of solutions of (E}, which are the natural analogs
of the evolution case (i.e., G = 0). Mitidieri [14] studied the strong
convergence of solutions of (E). In particular, by using the properties of
almost nonexpansive curve which was introduced by Djafari Rouhani
[8), Jung, Park and Kang [12] established the weak convergences of
solutions of {E) and the Cesaro mean of solutions of (E).

The purpose of this paper is to study the strong convergence of
the Cesaro mean of solutions of (E). Our study can be viewed as a
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continuation of [12]. In Section 2, we describe the notations and contain
some definitions and known results. Section 3 contains the asymptotic
properties of almost odd nonexpansive curve. Finally, in Section 4, we
give a main asymptotic result of the Cesaro mean of solutions of (E).

2. Preliminaries

Let H be a real Hilbert space with inner product ( , ) and norm | ||.
Let A be a maximal monotone {possibly multivalued) operator defined
on subset D(A) C H. As usual, we will put [z,y] € 4 & y € Az. For
background material concerning maximal monotone operators, see [3,
4).

We will use “w —lim” or “ — ” to indicate weak convergence in
H. The symbol D denotes the closure of the set D. For a function
u : [0,00) = H, we denote by wy,(u(t)) the weak w-lmit set of u, i.e.,

&

ww(u(t)) = {y € H : y = w — limu(#,), for some sequence ¢, — oo}

and by €6w,,(u(t)) the closed convex hull of w,,(u(t)), respectively. Let
u : [0,00) = H be a bounded function. With the function u(t), we
associate the functional

$(y) = lim sup [lu(t) - yll>.

Then ¢ is a continuous, strictly convex function on H, satisfying ¢(y) —
oo as |ly|| — oo, and therefore ¢ has a unique minimum in H. The
unique point ¢ € H satisfying

¢(c) = min ¢(y)

is called the asymptotic center of u(t) and it is denoted by ¢ = AC(u(t)).
For these facts, see [10].
Consider now the initial value problem (E), where G satisfies (1.1),

x € D(A) and f € L}, ([0,00) : H). We recall the following definitions
f1, 7].
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DEFINITION 2.1. A strong solution of {E) on {0,00) is a function
u € WhH{0,00) : H) 0 C((0,00) : D(A)), satisfying w(0) = z and
du(t)/dt + Au(t) + G(u)(t) 2 f(t), a.e. on (0,00).

DEFINITION 2.2. A function u € C([0,00) : D(A)) is said to be
a generalized solution to equation (E) if there are sequences z, €

D(A), fn € L},([0,00) : H) and u, € C([0,00) : H) such that u,

18 a strong solution of

d
_‘dt% + Au, + G(un) =] fm
un(o) - mnv

Ta — T, fa — fin LY[0,7] : H) and u, — v in C([0,T] : H), for
each 0 < T < oo.

The following existence result is well-known (1, 7].

PROPOSITION 2.3. Let G satisfy (1.1) and assume that:
(1) There exists v € L;,({0,00) : R) such that for every u,v €
C([0, o) : D(4)),

t
(21) G(u) — G)Lro,g:1) < ﬁ (s)llw = vl oo (q0,a1-1y 45,
0<s <t <oo0.

(i1) For each T' € (0,00), there is ap : [0,00) —+ [0,00) such that if
u € C([0,T] : D(A)) is of bounded variation and {|u||ges (o, 13.51y < R,
then

(2.2)  var(G(u): [0,4]) < ap(R)(L +var(u:{0,4))), 0<i<T

and
IG(u)(0F)} < ar(R).
Then,

(a) For each z € D(A) and f € BVi ([0, 00) : H), problem (E} has
a unique strong solution defined on [0, 0c).
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(b) For each r € D(A) and f € L}, ([0,00) : H), problem (E) has a
unique generalized solution defined on {0, 00).

3. Asymptotic behavior of curves in H

In this section, we study asymptotic behavior of almost odd nunex
pansive curve.
Let u € C([0,00) : H); in the sequel we refer to such v as a curve

H. Let o(t) = (1/t) fy u(r)dr. Webegin with the following:

DEFINITION 3.1 [8]. The curve u(t) is almost nonexpansive (abbre
viated ANEC) if for any r,”s, h > 0,

lu(r + k) = u(s + R < [fu(r) — u(s)]* + e(r, 3),
where

lim e(r,s) = 0.

ra—o0

DEFINITION 3.2. The curve u(t) is almost odd nonexpansive (#i-
breviated AONEC), if curve u(t) is an ANEC and for any r, s, h > 9,

et + ) + u(s + B2 < [lu(r) + u(s)[* + €(r, 3),
where

im e(r,s) =0.

r.8—00
REMARK 3.3. (a) A nonexpansive curve {u(t)} that satisfies
llu(r + k) — u(s + A)|| < [lu(r) — u(s)|

for any r, s, h > 0, is an ANEC.
(b) A bounded curve {u(t)} that satisfies

tu(r + &) — u(s + B)|| < flu(r) — u(s)fj + e(r, s)
for any r, s, h > 0, where lim, s o €;(r,8) =0, is an ANEC.
In our next results, we will use the following notation:
B(u(t) = {g € H : lim flu(t) - qf| exists}.

Note that if E(u(t)) # 9, then curve {u(t)} is bounded.
We need the following lemmas, which are given in {8, 12].
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LEMMA 3.4 [8]. Let {u(t)} be an ANEC. Then

ww(o(t)) C E(u(t))-

LEMMA 3.5 [12]. Let {u(t)} be an ANEC in H. Then the following
are equivalent:

(1) w — limy—oo o(t) exists. _
(11) E(u(t)) # 8. Moreover, if w — lim¢_, 0(t) exists, then it is the
asymptotic center of {u(t)}.

THEOREM 3.6. Let {u(t)} be any curve in H. Then the following
are equivalent:

(1) (u(r),u(r + B)) — a(h) as r — oo uniformly in h > 0 (we call
this the property (x)).

(i) {u(t)} is an AONEC.

Proof. (i) = (ii): We have [Ju(t)||? — «(0) as t — oo and hence
{u(t)} is a bounded curve in H and for all € > 0 there exists I > 0 such
that

| (u(r + k), u(s + k) — (u(r),u(s)) | < e
for all r, s > I, h > 0. Therefore by taking

e(r,5) =) fulr + B) — u(s + W)|* = Jlu(r) = u(s)|* |
< e+ B2 + Huds + R - flu(r)lf — flu(s)i* |
+2| (u(r + R),uls + h)) = (u(r), u(s)) |,

we get
Bmsupe(r, s) < 2¢, uniformly in h > 0.

£,8=~+00

This implies that {u(t)} is an ANEC in H, since € > 0 was arbitrary.
Similarly, from the equality

lur + B) + u(s + R — flu(r) +u(s))?

= Jlu(r + WI? + flu(s + R)I* = [lu(r)]I* — flu(s)ll?
+2((u(r + k), u(s + B)) — (u(r), u(s))),
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it follows that flu(r +A)+u(s+A)|2 — [lu(r)+u(s)||> = 0asr, s — 00
(uniformly in A > 0). Therefore {u(t)} is an AONEC in H.

(i) = (i): First we prove that it follows from (ii) that ||u(t)}| con-
verges. Taking r = s and using the oddness, we get

dlu(r + R)|I? < 4fju(r)|]® + e (r).
Hence for all r > 0,
e1(r)

limsup [fu(s)|* < flu()|* + .=
§—+C0

Thus
lim sup [Ju(s)||* < liminf |[u(r){}?,
3—00 T—00

which implies that lu(t){f converges. Now let us prove that (u(s),u(s+
h)) is Cauchy, uniformly in A > 0. In fact, we have for I < k,

(k4 &) = w(E)1* < fuh + ) —w(DI* + e(h +1,2).
From this it follows that
2{(u(h + D, u(l)) = (u(h + k), u(k))
< Julh + DI + (DI - fuh + F)|? ~ u(®)))® + (b +1,1).
Similarly, from the inequality
fuCh + )+ u(O? < ulh+ )+ wDIF +ex(h+1,0),
it follows that
2[(u(h + k), u(k)) ~ (u(h + 1), u(D)]
<Nk + DI + (DI = fuCh+ BI* = lu(®)))® + e (h + 1,1).
Therefore we have
2| (u(h + D, u(l)) — (u(h + k), u(k)) |
< lleh + DI* + Hu(DIF ~ fluh + B — fu(k)]?

1 k—
+ max(e(h +1,1), ex(h + 1, 1)) T:o’ 0
uniformly in & > 0 since fju(t)|| converges, and this complete the proof.

As a immediate result, we have the following:
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COROLLARY 3.7. Let {u(t)} be any curve in H satisfying the prop-
erty (x). Then o(t) converges weakly to some p € H, where p is the as-
ymptotic center of the curve {u(t)}. Moreover we have (u(t),p) — ||pi®
as { — o0,

Proof. By Theorem 3.6, {u(t)} is an AONEC, and hence it is an
ANEC. And since ||lu(t)}} is convergent, it is bounded. Then, since
Hilbert space is reflexive, {o(¢)} has a subnet {o(¢,)} which converges
weakly to some p € H. By Lemma 3.4, w,(o(t)) C E{(u(t)), and so
P € E(u(t)). I there exists another subnet {o(#;)} which converges
weakly to some g € H, then we also have ¢ € E(u(t)). Hence the net

2u(t), g — p) + o2 — llgl? = fu(t) — plf? — lu(2) — gl
has a limit as ¢ — oo, i.e., lim¢—oo(u(t),q — p) exists. Therefore (p,q —
p) = (g, ¢ — p), which implies ||p — ¢||> = 0, and hence p = ¢q. Hence
every weakly convergent subnet of o(t) converges weakly to p, and
hence w — limy_, o, o(t) = p, which is the asymptotic center of {u(¥)}
by Lemma 3.5. Then, by Lemma 3.4, we also have p € E(u(t)), and
hence lim;_o Jju(t) — pl|? = 6% exists. But we have

((8),5) = 5RO + 217 ~ hu®) ~ pl”)

s 2(a(0) + I — ).

t—o0

Thus limy_,o(u(t), p) exists, and since (o(t),p) — ||p||% as t — oo, it
follows that lim¢—.eo(u(t), p) = [[p|{*. This completes the proof.

Now we denote the several notations;
d= lim [[u(t)],

pr) = lim |lu(r) — u(e)lf, p°() = lim [lu(r) + ()],

a(t)= /0 P(r)dr and )= 7 ]0 o7 (7)dr.
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PROPOSITION 3.8. If {u(t)} be any curve in H satisfying the prop-
erty (). Then limy_.o0 a(t) = 2(d* — ||p||?), where p is the weak limit
of o(t).

Proof. By Corollary 3.7, there exists p € H such that o{f) — p as
t — oo. Hence we have

+ | o= 3 [ lim ) - wie)Pyer

=1 /o llu(r)|2dr + & — 2( lim u(s), o(t))
—— 2(d* ~ lim (u(s),p)) = 2(d” - [|p||*)-

it—oo
Therefore, lim,_.o, a(t) = 2(d® — {ip|*)-
Now we study the strong convergence as ¢ — oo of the Cesaro mean
o(t) of AONEC {u(t)} in H.

PROPOSITION 3.9. Let {u(t}} be an curve in H satisfying the prop-
erty (x¥). Then o(t) converges strongly as t — oo to the asymptotic
center of the curve {u(t)}.

Proof. We already know by Corollary 3.7 that o(t) — p as t —
oo, where p is the asymptotic center of {u(t)}. Therefore to strong
convergence it is enough to show that ||o(¢)[|> — {|p||®>. Now we have

oI = [ [ ), utepyasar

=g || [ QO + B = ) = o))

1 t 2 1 t t "
= ¢ [ NutPar = 5z [ [ eyasdr ),

where

o) = 2% ]0 /; (lu(r) = w(s)|]2 = p2(r))dsdr > 0, for ¢ > 0.
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Now let

=57 / ] (u(r) + w(s)]|? ~ p* (r))dsdr > 0, for t > 0.

Since p*(r) + P‘z(r) = 2||u(r)||* + 242, for all r > 0, we have,
o040
= / [ U + 1) = () + o7 ()

_2 2 /0 lu(s)lf?ds - 24 —— 0.

Therefore
0< Jim o(t) < Jim (o(t) + d(t) = 0.

Hence lim; .o ¢(t) = 0. On the other hand, by Proposition 3.8,

1t 1, J
é-t;‘/;/op(r)dsdr=2~tj;p(r)r

— 4" —lp[*

and hence

ool = > [ e — gt [ [ e e et

—— & — (& — o) = i

Therefore, we have

lo(®) = 2II* = lo®)I* = 2o(2),p) + Il
— eI = 2llpl” + [ol* =0.

This completes the proof.
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REMARK 3.12. (1) Our proof of Proposition 3.9 is of interest in view
of use of almost odd nonexpansive curve. Compare this with Theorem
3.11 in {8].

(2) For the asymptotic properties of almost odd nonexpansive se-
quences, see [9].

4. Asymptotic behavior of solutions in H

In this section we give a main result concerning the asymptotic
behavior as ¢ — 0o of the Cesaro mean of generalized solutions of (E).
Following Aizicovici [1], we assume the following conditions:

(C1) G satisfies (1.1), (2.1) and (2.2).

(C2) For every u, v € C([0,00) : D(A)),

[ (©e) - e un) o ir 20, 05t <on

(C3) G(v) € L}{[0, 00) : H), for each constant function »(t) = v €
D(A).
(C4) f € L([0,00) : H).

(C5) z € D(A).

We begin with a simple lemma which will play a crucial role in our
results. For proof, see [1, 12}.

LEMMA 4.1. Let A be a maximal monotone operatoron H. Assume
that (C1) hold. Let f, f € L},.([0,00) : H) and z, £ € D(A). Let

u, @ be the corresponding generalized solutions of (E). If (C2) satisfied,
then

(4.1) lfu(?) — a(®)l| < [luls) ~ a(s)ll + /, [ £(r) = f()ldr

for0 <s <t <co.
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COROLLARY 4.2. Let A be 2 maximal monotone operator on H,
and f € Lj, ([0,00) : H). Assume that {C1), (C2), (C3) and (C5)
hold. If u is a generalized solution of (E), then for any v, s, h 2 0,

s+h
llulr +h) —u(s +R)|| < flu(r) —u(s)ll + / 1 f(r+(r =) - f(r)lidr.

Proof. It is enough to apply Lemma 4.1 with f(t) = f(t+(r —s))
and 4(¢) = u(t + (r — s)).

- PROPOSITION 4.3. Let A be a maximal monotone operator on H.
Assume that (C1), (C2), (C3), (C4) and (C5) hold. Ifu is a generalized
solution of (E) and if {u(t)} is bounded on [0, 00), then the curve {u(t)}
is an ANEC in H.

Proof. By (C4), we have

fm [5G+ (= 8)) — f(D)lldr =0,

r>s 3

Thus the result follows from Corollary 4.2 and Remark 3.3 (b) by taking

[ UGG =Sl i 2
er(rys) = :

[T UG+ = = ol it sz

r

LEMMA 4.4 [1, 12]. Let A be a maximal monotone operator on
H. Assume that (C1), (C2), (C3), (C4) and (C5) hold. Let u be a
generalized solution of (E). Then {u(t)} is bounded on [0,00) if and
only if A='0 is nonempty. Further, we have A~10 C E(u(t)).

Now we give the strong convergence as t — 0o of the Cesaro mean
a(t) of solution u(t) of (E).



218 Jong Soo Jung and Jong Yeoul Park

THEOREM 4.5. Let A be an odd maximal monotone operator on H
and let (C1), (C2), (C3), (C4) and (C5) be satisfied. Assume further
that G is an odd mapping, i.e., G(—u)(t) = —G(u)(t) fort > 0. Let
u be a generalized solution of (E} and o(t) = § f; u(7)dr. Then o(t)
converges strongly as t — oo to the asymptotic center of the curve
{u(®)}.

Proof. First, we note that since A is an odd maximal monotone
operator, we have 0 € A~10 so that {u(t)} is bounded on [0, c0) and
limy_,o ||u(t)]| exists by Lemma 4.4. Hence {u(t)} is an ANEC by
Proposition 4.3. Now, let us prove that {u(¢)} is an AONEC. To this
end, first we show that for the strong solutions u and @ of (E) with f
and f, respectively,

(4.2) u(t) + 2@l < [lu(s) + a(s)]l + [ 17() + f(r)ldr.

for 0 < s <t < co. In fact, since A is odd and monotone, it follows
that

0 < (f(t) — (1) — G(u)(t) + f(t) - &/(t) = G(a)(t), u(t) + i(t))
= (f() + f(t)u(t) + (1)) — (w'(t) + 8'(2), u(t) + (2))
— (G(u)(t) + G(@)(t), u(t) + 4(t))
1d

<A@ + F@ille(e) +ac)ll - 5 gl + al*

— (G(u)(t) + G()(2), u(t) + a(t))

for ¢ > 0. Integrating on [s,#], from the oddness of G and {C2), we
have

1
2

< lute) + P+ [ 1)+ FMato) + i)

[[u(t) + @ ()|
(4.3)

The inequality (4.2) follows from (4.3) and Gronwall’s lemma (see [4.
Lemma A.5]).
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By density, the inequality (4.2) also holds for the generalized solu-
tions u and @ of (E) with f and f, respectively. Then it follows with
F(#) = f( +(r — 5)) and a(t) = u(t + (r — s)) that

s+ h
[lufr + R} +u(s+R)ff < l(u(r)+u(3)||+j | f(r+(r—s))+ f(7)|ldr.
So, we have

(14) e+ B)+ uls + B < u(r) +u(o)] + ea(rya)
where
| M- iolar ez

e(r,s) =14 "1

/ Hfir+(=r)+ f(r)lldr i s>r.
Since it also follows from (C4) that

lim - |f(r+(r—38)) + f(r)jdr =0,

S, F—00
r>s s

we have Hmg ;o0 €1(r, 8). Thus, from (4.4) we conclude that for any
r, s, h>20,

llee(r + 2) +u(s + WY < Jlu(r) + u(s)||* + e(r, s),
where €(r,s) = (2Ju(r) + u(s)|| + e1(r, 5))ea{r, 3),

riigxw e(r,s) < r’iiglm(ZM + e1(r,s))er(r,8) =0,

and M = sup,¢jq o) |u(f)|[- That is, {u()} is an AONEC in H. There-
fore the result follows from Proposition 3.9.

REMARK 4.6. (1) The case in which ¢ = 0 was previously consid-
ered by Djafari Rouhani {8].
(2) Asin {2, 6, 11, 14, 15|, our results can be used to study the as-

ymptotic behavior of solutions of the related nonlinear Volterra equa-
tion:

u(t) + [t b(t — s)Au(s)ds > ¢(t), t>0
u(0) = z = g(0).
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