• Title/Summary/Keyword: Asymptotic approximation

Search Result 104, Processing Time 0.028 seconds

NON-GREY RADIATIVE TRANSFER IN THE PHOTOSPHERIC CONVECTION : VALIDITY OF THE EDDINGTON APPROXIMATION

  • BACH, KIEHUNN
    • Journal of The Korean Astronomical Society
    • /
    • v.49 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • The aim of this study is to describe the physical processes taking place in the solar photosphere. Based on 3D hydrodynamic simulations including a detailed radiation transfer scheme, we investigate thermodynamic structures and radiation fields in solar surface convection. As a starting model, the initial stratification in the outer envelope calculated using the solar calibrations in the context of the standard stellar theory. When the numerical fluid becomes thermally relaxed, the thermodynamic structure of the steady-state turbulent flow was explicitly collected. Particularly, a non-grey radiative transfer incorporating the opacity distribution function was considered in our calculations. In addition, we evaluate the classical approximations that are usually adopted in the onedimensional stellar structure models. We numerically reconfirm that radiation fields are well represented by the asymptotic characteristics of the Eddington approximation (the diffusion limit and the streaming limit). However, this classical approximation underestimates radiation energy in the shallow layers near the surface, which implies that a reliable treatment of the non-grey line opacities is crucial for the accurate description of the photospheric convection phenomenon.

An Analytic Calculation Method for Delay Time of RC-class Interconnects (RC-class 회로 연결선의 지연 시간 계산을 위한 해석적 기법)

  • Kal, Won-Kwang;Kim, Seok-Yoon
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.7
    • /
    • pp.1-9
    • /
    • 1999
  • This paper presents an analytic 3rd order calculation methods, without simulations, for delay time of RC-class circuits which are conveniently used to on-chip interconnects. While the proposed method requires comparable evaluation time than the previous 2nd order calculation method, it ensures more accurate results than those of 2nd order method. The proposed analytic delay calculation method guarantees allowable error tolerances when compared to the results obtained from the AWE (Asymptotic Waveform Evaluation) technique and has better performance in evaluation time as well as numerical stability. The first algorithm of the proposed method requires 8 moments for the 3rd order approximation and yields more accurate delay time approximation. The second algorithm requires 6 moments for the 3rd order approximation and results in shorter evaluation time, the accuracy of which may be less than the first algorithm.

  • PDF

Scattering analysis of curved FSS using Floquet harmonics and asymptotic waveform evaluation technique

  • Jeong, Yi-Ru;Hong, Ic-Pyo;Chun, Heoung-Jae;Park, Yong Bae;Kim, Youn-Jae;Yook, Jong-Gwan
    • Steel and Composite Structures
    • /
    • v.17 no.5
    • /
    • pp.561-572
    • /
    • 2014
  • In this paper, we present the scattering characteristics of infinite and finite array using method of moment (MoM) with Floquet harmonics and asymptotic waveform evaluation (AWE) technique. First, infinite cylindrical dipole array is analyzed using the MoM with entire domain basis function and cylindrical Floquet harmonics. To provide the validity of results, we fabricated the cylindrical dipole array and measured the transmission characteristics. The results show good agreements. Second, we analyzed the scattering characteristics of finite array. A large simulation time is needed to obtain the scattering characteristics of finite array over wide frequency range because Floquet harmonics can't be applied. So, we used the MoM with AWE technique using Taylor series and Pade approximation to overcome the shortcomings of conventional MoM. We calculated the radar cross section (RCS) as scattering characteristics using the proposed method in this paper and the conventional MoM for finite planar slot array, finite spherical slot array, and finite cylindrical dipole array, respectively. The compared results agree well and show that the proposed method in this paper is good for electromagnetic analysis of finite FSS.

Three Stage Estimation for the Mean of a One-Parameter Exponential Family

  • M. AlMahmeed;A. Al-Hessainan;Son, M.S.;H. I. Hamdy
    • Communications for Statistical Applications and Methods
    • /
    • v.5 no.2
    • /
    • pp.539-557
    • /
    • 1998
  • This article is concerned with the problem of estimating the mean of a one-parameter exponential family through sequential sampling in three stages under quadratic error loss. This more general framework differs from those considered by Hall (1981) and others. The differences are : (i) the estimator and the final stage sample size are dependent; and (ii) second order approximation of a continuously differentiable function of the final stage sample size permits evaluation of the asymptotic regret through higher order moments. In particular, the asymptotic regret can be expressed as a function of both the skewness $\rho$ and the kurtosis $\beta$ of the underlying distribution. The conditions on $\rho$ and $\beta$ for which negative regret is expected are discussed. Further results concerning the stopping variable N are also presented. We also supplement our theoretical findings wish simulation results to provide a feel for the triple sampling procedure presented in this study.

  • PDF

Small Sample Asymptotic Distribution for the Sum of Product of Normal Variables with Application to FSK Communication (곱 정규확률변수의 합에 대한 소표본 점근분표와 FSK 통신에의 응용)

  • Na, Jong-Hwa;Kim, Jung-Mi
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.1
    • /
    • pp.171-179
    • /
    • 2009
  • In this paper we studied the effective approximations to the distribution of the sum of products of normal variables. Based on the saddlepoint approximations to the quadratic forms, the suggested approximations are very accurate and easy to use. Applications to the FSK (Frequency Shift Keying) communication are also considered.

Zeroth-Order Shear Deformation Micro-Mechanical Model for Periodic Heterogeneous Beam-like Structures

  • Lee, Chang-Yong
    • Journal of Power System Engineering
    • /
    • v.19 no.3
    • /
    • pp.55-62
    • /
    • 2015
  • This paper discusses a new model for investigating the micro-mechanical behavior of beam-like structures composed of various elastic moduli and complex geometries varying through the cross-sectional directions and also periodically-repeated along the axial directions. The original three-dimensional problem is first formulated in an unified and compact intrinsic form using the concept of decomposition of the rotation tensor. Taking advantage of two smallness of the cross-sectional dimension-to-length parameter and the micro-to-macro heterogeneity and performing homogenization along dimensional reduction simultaneously, the variational asymptotic method is used to rigorously construct an effective zeroth-order beam model, which is similar a generalized Timoshenko one (the first-order shear deformation model) capable of capturing the transverse shear deformations, but still carries out the zeroth-order approximation which can maximize simplicity and promote efficiency. Two examples available in literature are used to demonstrate the consistence and efficiency of this new model, especially for the structures, in which the effects of transverse shear deformations are significant.

Universal Theory for Planar Deformations of an Isotropic Sandwich Beam (등방성 샌드위치 빔의 평면 변형을 위한 통합 이론)

  • Lee, Chang-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.7
    • /
    • pp.35-40
    • /
    • 2020
  • This work is concerned with various planar deformations of an isotropic sandwich beam, which generally consists of three layers: two stiff skin layers and one soft core layer. When one layer of the sandwich beam is modeled as a beam, the variational-asymptotic method is rigorously used to construct a zeroth-order beam model, which is similar to a generalized Timoshenko beam model capable of capturing the transverse shear deformations but still carries out the zeroth-order approximation. To analyze the planar sandwich beam, the sum of the energies of the two skin layers and one core layer is then formulated with different material and geometric properties and represented by a universal beam model in terms of the core-layer kinematics through interface displacement and stress continuity conditions. As a preliminary validation, two extreme examples are presented to demonstrate the capability and accuracy of this present approach.

Approximation of a Warship Passive Sonar Signal Using Taylor Expansion (테일러 전개를 이용한 함정 수동 소나 신호 근사)

  • Hong, Wooyoung;Jung, Youngcheol;Lim, Jun-Seok;Seong, Woojae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.4
    • /
    • pp.232-237
    • /
    • 2014
  • A passive sonar of warship is composed of several directional or omni-directional sensors. In order to model the acoustic signal received into a warship sonar, the wave propagation modeling is usually required from arbitrary noise source to all sensors equipped to the sonar. However, the full calculation for all sensors is time-consuming and the performance of sonar simulator deteriorates. In this study, we suggest an asymptotic method to estimate the sonar signal arrived to sensors adjacent to the reference sensor, where it is assumed that all information of eigenrays is known. This method is developed using Taylor series for the time delay of eigenray and similar to Fraunhofer and Fresnel approximation for sonar aperture. To validate the proposed method, some numerical experiments are performed for the passive sonar. The approximation when the second-order term is kept is vastly superior. In addition, the error criterion for each approximation is provided with a practical example.

Construction of Optimal Concatenated Zigzag Codes Using Density Evolution with a Gaussian Approximation

  • Hong Song-Nam;Shin Dong-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.9C
    • /
    • pp.825-830
    • /
    • 2006
  • Capacity-approaching codes using iterative decoding have been the main subject of research activities during past decade. Especially, LDPC codes show the best asymptotic performance and density evolution has been used as a powerful technique to analyze and design good LDPC codes. In this paper, we apply density evolution with a Gaussian approximation to the concatenated zigzag (CZZ) codes by considering both flooding and two-way schedulings. Based on this density evolution analysis, the threshold values are computed for various CZZ codes and the optimal structure of CZZ codes for various code rates are obtained. Also, simulation results are provided to conform the analytical results.

Approximation Models for Structure-External Acoustic Interaction (외부 음향과 구조의 연동 현상 고려한 근사 모델)

  • Lee, Moon-Seok;Park, Youn-Sik;Park, Young-Jin;Park, K.C.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1191-1195
    • /
    • 2007
  • Many approximate models for interaction between a flexible structure and an infinite external acoustic medium have been developed for a long time. Among them, Doubly Asymptotic Approximations (DAAs) are very well known approximations. But, it has shortcomings in intermediate frequency range and can't fully describe the acoustic medium. So, this paper presents the modified approximation by applying the retarded and advanced potentials to Kirchhoff's formula. It describes the external acoustic medium more in detail and shows a good result in early time transient responses when it was applied to a spherical shell. Through a spherical shell interacting with external acoustic medium, the transient responses for the proposed model is compared to Huang's exact solution and DAA2.

  • PDF