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Abstract: This paper discusses a new model for investigating the micro-mechanical behavior of beam-like 

structures composed of various elastic moduli and complex geometries varying through the 

cross-sectional directions and also periodically-repeated along the axial directions. The original 

three-dimensional problem is first formulated in an unified and compact intrinsic form using the concept 

of decomposition of the rotation tensor. Taking advantage of two smallness of the cross-sectional 

dimension-to-length parameter and the micro-to-macro heterogeneity and performing homogenization along 

dimensional reduction simultaneously, the variational asymptotic method is used to rigorously construct 

an effective zeroth-order beam model, which is similar a generalized Timoshenko one (the first-order 

shear deformation model) capable of capturing the transverse shear deformations, but still carries out the 

zeroth-order approximation which can maximize simplicity and promote efficiency. Two examples 

available in literature are used to demonstrate the consistence and efficiency of this new model, 

especially for the structures, in which the effects of transverse shear deformations are significant.

Key Words：Homogenization, Dimensional Reduction, Spanwise Heterogeneity, Variational Asymptotic 

Method, Transverse Shear Deformation

*†Chang-Yong Lee (corresponding author) : Department of 

Mechanical Engineering, Pukyong National University.

E-mail : bravenlee@pknu.ac.kr, Tel : 051-619-6133 

1. Introduction

Due to high-strength and low-weight, superior 

noise and energy absorption, and high-temperature 

resistance characteristics, composite materials have 

demonstrated excellently practical potential and 

rapidly increasing popularity in various engineering 

applications. Furthermore, extensive analytic 

understandings and elaborate experimental techniques 

predicting and controlling their properties are even 

possible to manufacture new microstructure-based 

materials and structures to achieve the 

ever-increasing performance requirements. With the 

help of the phenomenal power of present day 

computer facilities the full three-dimensional (3D) 

finite element analysis (FEA) is widely accepted and 

used for analysis of such materials and structures by 

meshing all the details of constituent 

microstructures. However, it is not an efficient and 

convenient way because of the inordinate 

requirements of computational cost to capture the 

micro-scale mechanical characteristics. 

For this reason, research attentions devoted to an 

alternative approach of the full 3D FEA, especially, 

by using a unit cell (UC) have received 

considerable attention in the past several decades. It 

allows for a practical definition of the building 

block of the heterogeneous material, and leads to 
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replacing the original heterogeneous structures with 

a homogeneous one with a set of effective material 

properties if the size of UC () is much smaller 

than the size of the structure ( ) (i.e. 
   ≪ ). See Kanouté et al.5) for a review. 

However, most of these approaches are not suitable 

for engineering analyses of dimensionally reducible 

structures7), i.e. those with one or two dimensions 

much smaller than others. Composite beam-like 

structures are one of examples with the 

cross-sectional dimension  much smaller than the 

axial dimension (i.e.    ≪ ).

In this work, we propose to use the variational 

asymptotic method (VAM)1) to carry out 

simultaneous homogenization and dimensional 

reduction, to construct an engineering model suitable 

for beam made of spanwisely periodic and 

heterogeneous microstructures, and to extend the 

previous work6) by producing a non-classical model 

that includes transverse shear effects, but still carries 

out the zeroth-order approximation which can 

maximize simplicity and promote efficiency. 

Considering both smallness of the cross-sectional 

dimension-to-length parameter( ) and 

heterogeneity(), we use VAM to rigorously 

decouple the original 3D anisotropic, heterogeneous 

problem into a nonlinear one-dimensional (1D) beam 

analysis on the macroscopic level and a linear 3D 

micro-mechanical analysis. The micro-mechanical 

analysis can be implemented in COMSOL 

MULTIPHYSICSTM (COMSOL), a finite element 

based simulation and modeling tool. As a 

preliminary validation of the present approach, two 

examples, in which the transverse shear deformation 

is especially significant, are used to demonstrate the 

application and accuracy of this new model.

2. Beam kinematics and 3D 

formulation with homogenization

Geometrically, when a 3D elastic body has one 

dimension much larger than the other two,it can be 

mathematically modeled as a beam with a 1D 

reference line  measured by the axial coordinate 

 and the two-dimensional (2D) reference plane  

by cross-sectional Cartesian coordinates  (Here 

and throughout the paper, Greek indices assume 

values 2 and 3 while Latin indices assume 1, 2, and 

3. Repeated indices are summed over their range 

except where explicitly indicated). Let us now 

consider a heterogeneous beam-like structure 

composed of periodically-repeated unit cells (UCs), 

denoted by  , over the axial coordinate  along 

 (see Fig. 1).

Fig. 1 A heterogeneous beam-like structure with 

spanwise-repeated unit cell

To implement the homogenization procedure into 

the present approach, we need to assume the 

existence of a distinct scale separation between two 

types of spatial variations, and describe the rapid 

change in the material characteristics along the axial 

direction by one so-called ‘fast’ variation  parallel 

to a ‘slow’ variation . These two sets of 

variations are related as   .

In order to homogenize the heterogeneous 

beam-like structures with representative UCs, there 

are only two indispensable assumptions associated 

with the micro-mechanical analysis through the 

homogenization procedure6). First, we assume that 
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the exact solution of the field variables have volume 

averages over . Second, due to the existence of a 

distinct scale separation between two types of 

spatial variations described by  and , and the 

assessment and checkup of the orders of all the 

quantities in the formulation, the derivative of a 

function,  , defined in , with respect to  can 

be evaluated as







   





  

≡′



(1)

Note that in real derivation,  is not a number 

but denoting the order of the term it is associated 

with.

For the 3D beam kinematic description, letting b 
denote an orthonormal reference triad along the 

coordinate lines of the undeformed beam, one can 

then describe the position of any material point by 

its position vector r  relative to a point  fixed in 

an inertial frame, such that

r  rb       (2)

where r is the position vector of a point located 

by  on the reference line and r′  b.
When the beam deforms, the particle has the 

corresponding position vector R  in the deformed 

configuration. To determine the latter uniquely by 

the deformation of 3D body, a new orthonormal 

triad B   is first introduced for the deformed beam 

as unit base vectors, which is just a tool to 

represent vectors and tensors in their component 

form during the derivation. The relation between B   
and b  can be specified by an arbitrary large 

rotation in terms of the matrix of direction cosines 

 . On the previous work6), instead of B  , 
we introduced another triad T  with T tangent to 

the deformed beam reference line and T 
determined by a rotation about T. However, these 

restrictions are released in the present approach for 

capturing transverse shear effects on beam-like 

structures. That is, the difference between two types 

of orthonormal triads is due to small rotations 

associated with transverse shear deformation.

Now any material point in the deformed beam 

can be represented by its position vector R
R RBB

(3)

where R ru  denotes the position vector of the 

reference line for the deformed structure, ub  is 

the displacement vector of the reference line from 

the undeformed configuration, and   denotes the 

undetermined fluctuating functions describing the 

deformation not captured by R  and B  . Due to the 

existence of a distinct scale separation between two 

types of spatial variations described by  and , 

  are periodic functions in , that is

    (4)

In order to ensure a one-to-one mapping between 

R  and (R , B  , ) in Eq. (3), six constraints are 

needed. If we define R〈R〉, then we have the 

following three constraints

〈〉≡          (5)

It means that fluctuating function does not 

contribute to the rigid-body displacement of the UC. 

Also, the following constraint

〈 〉            (6)

is chosen related to twisting associated with the 

rotation of the UC about B. Following Yu et al.7), 

there is now a need to impose two additional 
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constraints on the unknown fluctuating function 

because B is not necessarily parallel to the tangent 

line due to the two extra degrees of freedom 

associated with transverse shear deformation. Thus, 

in addition to the four classical constraints in Eqs. 

(5) and (6), the fluctuating function satisfies two 

additional ones

〈〉               (7)

to make the formulation in Eq. (3) unique.

For the purpose of formulating our problem in 

the intrinsic form at the global level, the 1D 

generalized strain measures including transverse 

shear strains can be defined using the partial 

derivatives R  and B   with respect to , such as

R′  B B         (8)

and

B ′ K×B  with K k         (9)

where  is the extensional strain,  are the 

transverse shear strains, K is the curvature vector of 

the deformed reference line, k is the curvature 

vector of the undeformed one,  is the twist, and 

 are the bending curvatures. Here for simplicity, 

we restrict the beam structure to be prismatic such 

that    and K.

Based on the concept of decomposition of 

rotation tensor3), the 3D Jauman-Biot-Cauchy strain 

components for small local rotation are given by

  


        (10)

where  is the Kronecker symbol, and  the 

mixed-basis component of the deformation gradient 

tensor such that

 B  ∙Gg∙b        (11)

Here g  are the 3D contravariant base vector of 

the undeformed configuration and in a prismatic 

case, g  g  b, while G are the 3D covariant 

basis vectors of the deformed configuration, which 

can be obtained in the following way:

G 
R
R′

 R  and G  



R
 

 R 
(12)

Here the second expressions of Eq. (12) are 

attributed to the consideration of the distinct scale 

separation between fast spatial variations ( and 

) and a slow spatial one () during the 

derivation.

With the assumption that the 1D generalized 

strains are small compared to unity which is 

sufficient for geometrical nonlinear analysis, we can 

neglect all the terms that are products of the 3D 

fluctuating functions and the 1D generalized strains, 

and obtain the 3D strain field. Therefore, The strain 

energy stored in the heterogeneous beams can be 

generally calculated as:

 




〈〉       (13)

where        
  and D is 

the 3D × material matrix, which consists of 

elements of the fourth-order elasticity tensor 

expressed in the cross-sectional coordinate system 

 and the local axial coordinate system .

To deal with the applied loads, we alternatively 

develop the virtual work of the applied loads. 

However, according to Yu. et al.7) the virtual work 

done by the external forces can be negligible in the 

zeroth-order approximation because the applied loads 

are of higher order. 

Now, the complete statement of the problem up 

to the zeroth-order approximation can be expressed 

in terms of the principle of virtual work, such that



Chang-Yong Lee

한국동력기계공학회지 제19권 제3호, 2015년 6월  59

                 (14)

Thus, one can pose the problem that governs the 

only fluctuating functions as the minimization of a 

total potential functional

  with           (15)

3. Dimensional Reduction

To rigorously and efficiently reduce the original 

3D problem to an effective 1D beam model with 

spanwise heterogeneity, VAM will be used to 

mathematically reproduce the 3D energy stored in 

the heterogeneous structure into a 1D intrinsic 

formulation, which is asymptotically correct up to 

the desired order taking advantage of the small 

parameters inherent in the structure. Here three 

small parameters are introduced into the problem:   

denoting the smallness of generalized strains,   

denoting the smallness of the cross-sectional 

dimensions-to-length parameter and  denoting the 

smallness of heterogeneity6). 

 Following Yu. et al.7) the quantities of interest 

assess and keep track of the following determined 

orders in the formulation:

∼ ∼∼          (16)

Here unlike the previous work6) we consider that 

the transverse shear effects are not the correction (or 

higher-order terms) to a classical beam theory; they 

are the effects of the leading order, which are 

introduced into the zeroth-order approximation of 

the present approach.

In order to obtain the strain energy for the 

zeroth-order approximation, the corresponding 3D 

strain field can be used in the following matrices 

such as

            (17)

where  ⌊⌋, 

 ⌊⌋, and

  
















 












 



 




 






  



 











     
     

     
     
     
     

(18)

Substituting Eq. (17) into Eq. (13), the total 

potential can be retained as the formally leading 

terms in the form

 〈     〉
(19)

According to the usual procedure of calculus of 

variations, one can obtain the result that the 

undetermined fluctuating functions are linearly 

related to  . In addition, for the general case, we 

need to use some numerical techniques such as 

FEM for calculating approximate solutions. 

Therefore, one can express the fluctuating functions 

as

      (20)

where  is the × matrix of the fluctuating 

displacement function values defined over .

In order to deal with realistic and complex UC 

geometries and constituent materials efficiently and 

conveniently, Eq. (19) is alternatively reformulated 

into the corresponding PDE suitable for 

incorporation into COMSOL such as

 
     in      (21)
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In addition, the periodic boundary conditions in 

Eqs. (4) and the average constraints in Eqs. (5), (6) 

and (7) can be easily handled in COMSOL through 

the following way:

   on    (22)

and

〈〉, 〈 〉 and 〈〉 (23) 

Estimating the solution  of Eq.(21) from 

COMSOL and then substituting the solution back 

into Eq. (19), we can calculate the energy functional 

stored in the UC, asymptotically correct through the 

order of 

 as 

  
〈〉     (24)

where   is the effective 1D beam stiffness 

calculated from the knowledge of complex geometric 

and material characteristics in a representative UC at 

the microscopic level considering the smallness of 

both cross-sectional dimension-to-length parameter 

and heterogeneity. Here the present approach is 

different from the 2D cross-sectional one without 

spanwise heterogeneity7) mainly in the following 

aspect. To obtain the effective 1D beam stiffness 

including the transverse shear stiffness, Refs. need 

to carry out the first-order approximation to obtain 

the asymptotically correct strain energy through the 

second-order approximation and additional 

transformation processes to find an equivalent 

Timoshenko beam model (the first-order shear 

deformation model). while the present approach 

directly derive one through the zeroth-order 

approximation without significant loss of accuracy 

and inordinary burn of computational cost, especially 

on 3D problem with the dominant effects of 

transverse shear deformations.   

4. Validation Examples

As a preliminary validation of the present 

approach, we first investigate a simple beam made 

of an isotropic material. Second one, two 

heterogeneous beams having solid inverted T-section 

and multi-celled box section at the microscopic level 

and more significant transverse shear deformation at 

the macroscopic level are used to demonstrate the 

accuracy and capability of the proposed theory and 

the differences between the VABS (Variational 

Asymptotic Beam Sectional Analysis)7) and the 

present approach.

4.1 a simple beam made of an 

isotropic material

The first example is a simple beam made of one 

isotropic material with the material axes the same as 

the global coordinates  studied in Cesnik2). It has 

dimensions   [m] by   [m]. The material 

properties of the beam are ×[Pa] and 

  . According to the present theory, we can 

model this beam using two approaches: (a) 2D UC 

without periodicity and (b) 3D UC with spanwise 

periodicity along . As expected, we have verified 

that these two modeling approaches yield the same 

effective 1D beam stiffnesses as the closed-form 

solution of the Saint-Venant stiffnesses and the 

transverse shear stiffness using the shear correction 

factors () given by Cesnik2), with 

  ×
[N],   ×

[N․m2], 

 
  ×

[N․m2], and 

 
  ×

[N․m].

4.2 solid inverted T-sectional and 

multi-celled box-sectional beams

Second, let us consider two wind turbine blade 

models having a solid inverted T and a multi-cell 

box unit sections studied in Jonnalagadda and 

Whitcomb(JW)4):

For the solid inverted T unit section with the 

geometric variables and the material properties are 
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given by   [m],   [m] and 

×[Pa],    (Fig. 2-(a))

Fig. 2 Meshed (a) solid inverted T and (b) 

multi-cell box unit sections for wind turbine 

blades  

For the multi-cell box unit section with the 

geometric variables and the material properties are 

given by   [m],     [m],   [m], 

  [m],   [m],   [m] and 

×[Pa],    (Fig. 2-(b))

The effective 1D beam stiffnesses predicted by 

the approach in Jonnalagadda and Whitcomb4), 

VABS based on the first-order approximation and 

the present approach based on the zeroth-order one 

are listed in Table 1.

Table 1 Effective 1D beam stiffnesses obtained by 

Jonnalagadda and Whitcomb (JW)4), VABS 

and the present approach (PA)

Case (a) × Case (b) ×

JW VABS PA JW VABS PA
 3.60 3.60 3.60 2.38 2.38 2.38

 6.00 6.00 6.00 2.38 2.38 2.38

 0.88 0.88 0.89 0.06 0.06 0.06

 -1.28 -1.27 -1.29 -0.06 -0.06 -0.06

 0.81 0.81 0.81 0.01 0.01 0.01

 3.35 3.33 3.32 5.36 5.37 5.36

 14.4 14.4 14.4 4.18 4.18 4.18

 3.60 3.60 3.60 66.6 66.7 66.6

As expected, these results for wind turbine blade 

models show good agreement between three 

approaches. Here we digress to point out that the 

present approach is much more efficient because 

using the approach in Jonnalagadda and Whitcomb4) 

one needs to carry out six analyses of a 3D unit 

cells under six different sets of boundary conditions 

and load conditions and postprocess the 3D stresses 

to compute the beam stress resultants, while using 

the present approach, one only needs to carry out 

one analysis of a 3D UC and any postprocess is not 

required. Also, using VABS one need to produce a 

refined model, which requires the first-order 

approximation and additional transformation 

processes that include transverse shear effects, but 

the present approach still carries out the zeroth-order 

approximation which can maximize simplicity and 

promote efficiency, with or without spanwise 

periodicity.

5. Conclusions

The variational asymptotic method leading to 

simultaneous homogenization and dimensional 

reduction is used to construct a new model for 

investigating the micro-mechanical behavior of 

heterogeneous beam-like structures, which are 

composed of periodically-repeated microstructures 

along the axial direction. Without significant loss of 

simplicity and efficiency, this model serves as a 

rigorous link between the original 3D heterogeneous 

problem and the simple engineering beam models 

such as the zeroth-order Timoshenko beam model. 

As a preliminary validation of the present approach, 

two examples available in literature are used to 

demonstrate the consistence and efficiency of this 

new model, especially for the structures, in which 

the effects of transverse shear deformations are 

significant.
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