• Title/Summary/Keyword: Asymmetry technique

Search Result 120, Processing Time 0.027 seconds

The Vectra M3 3-dimensional digital stereophotogrammetry system: A reliable technique for detecting chin asymmetry

  • Hansson, Stina;Ostlund, Emil;Bazargani, Farhan
    • Imaging Science in Dentistry
    • /
    • v.52 no.1
    • /
    • pp.43-51
    • /
    • 2022
  • Purpose: The aim of this study was to evaluate the reliability of the Vectra M3 (3D Imaging System; Canfield Scientific, Parsippany, NJ, USA) in detecting chin asymmetry, and to assess whether the automatic markerless tracking function is reliable compared to manually plotting landmarks. Materials and Methods: Twenty subjects (18 females and 2 males) with a mean age of 42.5±10.5 years were included. Three-dimensional image acquisition was carried out on all subjects with simulated chin deviation in 4 stages (1-4 mm). The images were analyzed by 2 independent observers through manually plotting landmarks and by Vectra software auto-tracking mode. Repeated-measures analysis of variance and the Tukey post-hoc test were performed to evaluate the differences in mean measurements between the 2 operators and the software for measuring chin deviation in 4 stages. The intraclass correlation coefficient (ICC) was calculated to estimate the intra- and inter-examiner reliability. Results: No significant difference was found between the accuracy of manually plotting landmarks between observers 1 and 2 and the auto-tracking mode (P=0.783 and P=0.999, respectively). The mean difference in detecting the degree of deviation according to the stage was <0.5 mm for all landmarks. Conclusion: The auto-tracking mode could be considered as reliable as manually plotted landmarks in detecting small chin deviations with the Vectra® M3. The effect on the soft tissue when constructing a known dental movement yielded a small overestimation of the soft tissue movement compared to the dental movement (mean value<0.5 mm), which can be considered clinically non-significant.

A Research on the Magnitude/Phase Asymmetry Measurement Technique of the RF Power Amplifier Based on the Predistortive Tone Cancellation Technique

  • Choi, Heung-Jae;Shim, Sung-Un;Kim, Young-Gyu;Jeong, Yong-Chae;Kim, Chul-Dong
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.2
    • /
    • pp.73-77
    • /
    • 2010
  • This paper proposes a novel memory effect measurement technique in RF power amplifiers(PAs) using a two-tone intermodulation distortion(IMD) signal with a very simple and intuitive algorithm. Based on the proposed predistortive tone cancellation technique, the proposed measurement method is capable of measuring the relative phase and magnitude of the third-order and fifth-order IMDs, as well as the fundamental signal. The measured relative phase between the higher and lower IMD signal for specific tone spacing can be interpreted as the group delay(GD) information of the IMD signal concerned. From the group delay analysis, we can conclude that an adaptive control of GD as well as the magnitude and phase is a key function in increasing the linearization bandwidth and the dynamic range in a predistortion(PD) technique.

An 8-b 1GS/s Fractional Folding CMOS Analog-to-Digital Converter with an Arithmetic Digital Encoding Technique

  • Lee, Seongjoo;Lee, Jangwoo;Lee, Mun-Kyo;Nah, Sun-Phil;Song, Minkyu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.5
    • /
    • pp.473-481
    • /
    • 2013
  • A fractional folding analog-to-digital converter (ADC) with a novel arithmetic digital encoding technique is discussed. In order to reduce the asymmetry errors of the boundary conditions for the conventional folding ADC, a structure using an odd number of folding blocks and fractional folding rate is proposed. To implement the fractional technique, a new arithmetic digital encoding technique composed of a memory and an adder is described. Further, the coding errors generated by device mismatching and other external factors are minimized, since an iterating offset self-calibration technique is adopted with a digital error correction logic. A prototype 8-bit 1GS/s ADC has been fabricated using an 1.2V 0.13 um 1-poly 6-metal CMOS process. The effective chip area is $2.1mm^2$(ADC core : $1.4mm^2$, calibration engine : $0.7mm^2$), and the power consumption is 88 mW. The measured SNDR is 46.22 dB at the conversion rate of 1 GS/s. Both values of INL and DNL are within 1 LSB.

A Comparative Quantitative Analysis of IDEAL (Iterative Decomposition of Water and Fat with Echo Asymmetry and Least Squares Estimation) and CHESS (Chemical Shift Selection Suppression) Technique in 3.0T Musculoskeletal MRI

  • Kim, Myoung-Hoon;Cho, Jae-Hwan;Shin, Seong-Gyu;Dong, Kyung-Rae;Chung, Woon-Kwan;Park, Tae-Hyun;Ahn, Jae-Ouk;Park, Cheol-Soo;Jang, Hyon-Chol;Kim, Yoon-Shin
    • Journal of Magnetics
    • /
    • v.17 no.2
    • /
    • pp.145-152
    • /
    • 2012
  • Patients who underwent hip arthroplasty using the conventional fat suppression technique (CHESS) and a new technique (IDEAL) were compared quantitatively to assess the effectiveness and usefulness of the IDEAL technique. In 20 patients who underwent hip arthroplasty from March 2009 to December 2010, fat suppression T2 and T1 weighted images were obtained on a 3.0T MR scanner using the CHESS and IDEAL techniques. The level of distortion in the area of interest, the level of the development of susceptibility artifacts, and homogeneous fat suppression were analyzed from the acquired images. Quantitative analysis revealed the IDEAL technique to produce a lower level of image distortion caused by the development of susceptibility artifacts due to metal on the acquired images compared to the CHESS technique. Qualitative analysis of the anterior area revealed the IDEAL technique to generate fewer susceptibility artifacts than the CHESS technique but with homogeneous fat suppression. In the middle area, the IDEAL technique generated fewer susceptibility artifacts than the CHESS technique but with homogeneous fat suppression. In the posterior area, the IDEAL technique generated fewer susceptibility artifacts than the CHESS technique. Fat suppression was not statistically different, and the two techniques achieved homogeneous fat suppression. In conclusion, the IDEAL technique generated fewer susceptibility artifacts caused by metals and less image distortion than the CHESS technique. In addition, homogeneous fat suppression was feasible. In conclusion, the IDEAL technique generates high quality images, and can provide good information for diagnosis.

Extracting the axis of potential axial symmetry employing variance minimization

  • Kim, Hyoung-Seop;Ishikawa, Seiji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.434-437
    • /
    • 1996
  • Symmetry is one of the important structural properties of shapes both in perceptual psychology and in computer vision. Recently, a number of automatic symmetry finding algorithms have been reported. Among them, the algorithm based on the use of principal axes of objects is the most general and practical. It is, however, of no use when shapes concerned have some asymmetry. Asymmetric shapes which make us associate with certain kinds of symmetry are practically important and they are called shapes with potential symmetry in this paper. The algorithm we have already proposed can cope with those shapes having potential axial symmetry. The algorithm employs a reflected image of the original and a certain evaluation function. In the former paper, areal minimization was employed for the evaluation function and it yielded satisfactory experimental results. However, it could not cope with those shapes which have larger asymmetry. In this paper, we propose the employment of variance as an alternative evaluation index with respect to the difference image between the reflected and the original shape. The technique is examined its performance by real video images as well as synthetic data. Experimental results are shown and discussion is given.

  • PDF

Discrimination of Spinal Deformity Employing Discriminant Analysis on the $Moir\acute{e}$ Images

  • Kim, Hyoung-Seop;Ishikawa, Seiji;Otsuka, Yoshinori;Shimizu, Hisashi;Nakada, Yasuhiro;Shinomiya, Takashi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1990-1993
    • /
    • 2003
  • In this paper, we propose a technique for automatic spinal deformity detection from $moir\acute{e}$ topographic images. Normally the $moir\acute{e}$ stripes show symmetry as a human body is almost symmetric. According to the progress of the deformity of a spine, asymmetry becomes larger. Numerical representation of the degree of asymmetry is therefore useful in evaluating the deformity. First, displacement of local centroids and difference of gray values are evaluated statistically between the left- and the right-hand side regions of the $moir\acute{e}$ images with respect to the extracted middle line. We classify the moire images into two categories i.e., normal and abnormal cases from the features, employing discriminant analysis. An experiment was performed employing 1,200 $moir\acute{e}$ images and 85% of the images were classified correctly.

  • PDF

A Study on the Vibration Characteristics of Symmetry, Asymmetry Laminated Composite Materials by using Time-Average ESPI (시간평균 ESPI를 이용한 대칭.비대칭 적층 복합재료의 진동 특성 비교에 관한 연구)

  • Hong Kyung-Min;Ryu Weon-Jae;Kang Young-Jung;Kang Shin-Jae
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.259-260
    • /
    • 2006
  • The ESPI(Electronic Speckle Pattern Interferometry) is a real time, full-field, non-destructive optical measurement technique. In this study, ESPI is proposed for the purpose of vibration analysis for new material, composite material. Composite materials have various complicated characteristics according to the ply materials, ply orientations, ply stacking sequences and boundary conditions. Therefore, it is difficult to analysis composite materials. For efficient use of composite materials in engineering applications the dynamic behavior, that is, natural frequencies, nodal patterns should be informed. If use Time-Average ESPI, can analyze vibration characteristic of composite material by real time easily. This study manufactured laminated composite of symmetry, asymmetry two kinds that is consisted of CFRP(Carbon Fiber Reinforced Plastics) and shape of test piece is rectangular form.

  • PDF

Provincial Governance Quality and Earnings Management: Empirical Evidence from Vietnam

  • NGUYEN, Anh Huu;DUONG, Chi Thi
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.2
    • /
    • pp.43-52
    • /
    • 2020
  • The paper investigates the mechanism through which corporate credit ratings affect dividend payments by decomposing the mean difference of dividends into a part that is explained by the determinants of dividends and a residual part that is contributed by the pure credit group effect, in the framework of the traditional dividend model of Fama and French (2001). Historically, better credit rated firms have shown consistently higher propensity to pay dividends especially during the economic crisis period. According to the counter-factual decomposition technique of Jann (2008), better rated firms are more responsive to the firm characteristics that have positive impact on dividends and poor rated firms are more responsive to the negative dividend predictors. As a result, good (bad) credit ratings make corporate managers become more bold (timid) in their dividend payments and they tend to pay more (less) dividends than what their firm characteristics prescribe. The degree of information asymmetry increases for the poor group firms during crisis periods and they attempt to reserve more cash in preparation for future investments. The decomposition results suggest that the credit group effect can potentially exceed the effect of firm characteristics because firms of different credit ratings can respond to the very same firm characteristics in a different manner.

The Influence of Credit Scores on Dividend Policy: Evidence from the Korean Market

  • KIM, Taekyu;KIM, Injoong
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.2
    • /
    • pp.33-42
    • /
    • 2020
  • The paper investigates the mechanism through which corporate credit ratings affect dividend payments by decomposing the mean difference of dividends into a part that is explained by the determinants of dividends and a residual part that is contributed by the pure credit group effect, in the framework of the traditional dividend model of Fama and French (2001). Historically, better credit rated firms have shown consistently higher propensity to pay dividends especially during the economic crisis period. According to the counter-factual decomposition technique of Jann (2008), better rated firms are more responsive to the firm characteristics that have positive impact on dividends and poor rated firms are more responsive to the negative dividend predictors. As a result, good (bad) credit ratings make corporate managers become more bold (timid) in their dividend payments and they tend to pay more (less) dividends than what their firm characteristics prescribe. The degree of information asymmetry increases for the poor group firms during crisis periods and they attempt to reserve more cash in preparation for future investments. The decomposition results suggest that the credit group effect can potentially exceed the effect of firm characteristics because firms of different credit ratings can respond to the very same firm characteristics in a different manner.

Improvement of Infraorbital Rim contour Using Medpor

  • Hwang, So Min;Park, Seong Hyuk;Lee, Jong Seo;Kim, Hyung Do;Hwang, Min Kyu;Kim, Min Wook
    • Archives of Craniofacial Surgery
    • /
    • v.17 no.2
    • /
    • pp.77-81
    • /
    • 2016
  • Background: Asymmetry of the infraorbital rim can be caused by trauma, congenital or acquired disease, or insufficient reduction during a previous operation. Such asymmetry needs to be corrected because the shape of the infraorbital rim or midfacial skeleton defines the overall midfacial contour. Methods: The study included 5 cases of retruded infraorbital rim. All of the patient underwent restoration of the deficient volume using polyethylene implants between June 2005 and June 2011. The infraorbital rim was accessed through a subciliary approach, and the implants were placed in subperiosteal space. Surgical outcomes were evaluated using preoperative and postoperative computed tomography studies. Results: Implant based augmentation was associated with a mean projection of 4.6 mm enhancement. No postoperative complications were noted during the 30-month follow-up period. Conclusion: Because of the safeness, short recovery time, effectiveness, reliability, and potential application to a wide range of facial disproportion problems, this surgical technique can be applied to midfacial retrusion from a variety of etiologies, such as fracture involving infraorbital rim, congenital midfacial hypoplasia, lid malposition after blepharoplasty, and skeletal changes due to aging.