DOI QR코드

DOI QR Code

A Comparative Quantitative Analysis of IDEAL (Iterative Decomposition of Water and Fat with Echo Asymmetry and Least Squares Estimation) and CHESS (Chemical Shift Selection Suppression) Technique in 3.0T Musculoskeletal MRI

  • Kim, Myoung-Hoon (Department of Neuro-Surgery, Yesan Myoungji Hospital) ;
  • Cho, Jae-Hwan (Department of Radiological Science, Gyeongsan University College) ;
  • Shin, Seong-Gyu (Department of Radiological Technology, Busan dong-a University Medical Center) ;
  • Dong, Kyung-Rae (Department of Radiological Technology, Gwangju Health College University) ;
  • Chung, Woon-Kwan (Department of Nuclear Engineering, Chosun University) ;
  • Park, Tae-Hyun (Department of Radiological Technology, Soonchunhyang university Bucheon Hospital) ;
  • Ahn, Jae-Ouk (Department of Medical IT Engineering, Soonchunhyang University) ;
  • Park, Cheol-Soo (Department of Radiological Science, Hanlym Polytechnic University) ;
  • Jang, Hyon-Chol (Department of Radiological Science, Daegu Polytechnic University) ;
  • Kim, Yoon-Shin (Department of Public Health, Hanyang University)
  • Received : 2012.02.27
  • Accepted : 2012.04.09
  • Published : 2012.06.30

Abstract

Patients who underwent hip arthroplasty using the conventional fat suppression technique (CHESS) and a new technique (IDEAL) were compared quantitatively to assess the effectiveness and usefulness of the IDEAL technique. In 20 patients who underwent hip arthroplasty from March 2009 to December 2010, fat suppression T2 and T1 weighted images were obtained on a 3.0T MR scanner using the CHESS and IDEAL techniques. The level of distortion in the area of interest, the level of the development of susceptibility artifacts, and homogeneous fat suppression were analyzed from the acquired images. Quantitative analysis revealed the IDEAL technique to produce a lower level of image distortion caused by the development of susceptibility artifacts due to metal on the acquired images compared to the CHESS technique. Qualitative analysis of the anterior area revealed the IDEAL technique to generate fewer susceptibility artifacts than the CHESS technique but with homogeneous fat suppression. In the middle area, the IDEAL technique generated fewer susceptibility artifacts than the CHESS technique but with homogeneous fat suppression. In the posterior area, the IDEAL technique generated fewer susceptibility artifacts than the CHESS technique. Fat suppression was not statistically different, and the two techniques achieved homogeneous fat suppression. In conclusion, the IDEAL technique generated fewer susceptibility artifacts caused by metals and less image distortion than the CHESS technique. In addition, homogeneous fat suppression was feasible. In conclusion, the IDEAL technique generates high quality images, and can provide good information for diagnosis.

Keywords

References

  1. J. D. Zuckerman, M. L. Skovron, K. J. Koval, G. Aharonoff, and V. H. Frankel, J. Bone Joint Surg. Am. 77, 1551 (2000).
  2. L. J. Melton., H. W. Wahner, L. S. Richelson, W. M. O'Fallon, and B. L. Riggs, Am. J. Epidemiol. 2, 254 (1986).
  3. G. K. McKee and J. Watson-Farrar, J. Bone Joint Surg. 48, 245 (1966). https://doi.org/10.2106/00004623-196648020-00003
  4. P. A. Ring, J. Bone Joint Surg. 50, 720 (1968). https://doi.org/10.2106/00004623-196850040-00007
  5. L. D. Dorr, Z. Wan, D. B. Longjohn, B. Dubois, and R. Murken, J. Bone Joint Surg. 60, 787 (2000).
  6. M. Wagner and H. Wagner, Clin. Orthop. 379, 123 (2000). https://doi.org/10.1097/00003086-200010000-00015
  7. J. Ma, E. F. Jackson, A. J. Kumar, and L. E. Ginsberg, American Journal of Neuroradiology 30, 42 (2009). https://doi.org/10.3174/ajnr.A1422
  8. W. T. Dixon, Radiology 153, 189 (1984). https://doi.org/10.1148/radiology.153.1.6089263
  9. A. V. Barger, D. R. DeLone, M. A. Bernstein, and K. M. Welker, American Journal of Neuroradiology 27, 1292 (2006).
  10. W. Teresa, H. N. Listerud, and Y. Robert, Radiology 181, 41 (1991). https://doi.org/10.1148/radiology.181.1.1887054
  11. G. H. Glover and E. Schneider, Magn. Reson. Med. 18, 371 (1991). https://doi.org/10.1002/mrm.1910180211
  12. H. Yu, S. B. Reeder, A. Shimakawa, J. H. Brittain, and N. J. Pelc, Magn. Reson Med. 54, 1032 (2005). https://doi.org/10.1002/mrm.20654
  13. G. E. Gold, S. B. Reeder, H. Yu, P. Kornaat, A. S. Shimakawa, J. W. Johnson, N. J. Pelc, C. F. Beaulieu, and J. H. Brittain, Radiology 240, 546 (2006). https://doi.org/10.1148/radiol.2402050288
  14. J. Ma, E. F. ackson, A. J. Kumar, and L. E. Ginsberg, American Journal of Neuroradiology 30, 42 (2009). https://doi.org/10.3174/ajnr.A1422
  15. D. N. Costa, I. Pedrosa, C. McKenzie, S. B. Reeder, and N. M. Rofsky, Am. J. Roentgenol. 190, 1076 (2008). https://doi.org/10.2214/AJR.07.3182