• Title/Summary/Keyword: Asymmetric Surface

Search Result 252, Processing Time 0.023 seconds

Uncertainty Evaluation of Velocity Integration Method for 5-Chord Ultrasonic Flow Meter Using Weighting Factor Method (가중계수법을 이용한 5회선 초음파 유량계의 유속적분방법의 불확도 평가)

  • Lee, Ho-June;Lee, Kwon-Hee;Noh, Seok-Hong;Hwang, Sang-Yoon;Noh, Young-Ah
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.287-294
    • /
    • 2005
  • Flow rate measurement uncertainties of the ultrasonic flow meter are generally influenced by many different factors, such as Reynolds number, flow distortion, turbulence intensity, wall surface roughness, velocity integration method along the acoustic paths, and transducer installation method, etc. Of these influencing factors, one of the most important uncertainties comes from the velocity integration method. In the present study, a optimization weighting factor method for 5-chord, which is given by a function of the chord locations of acoustic paths, is employed to obtain the mean velocity in the flow through a pipe. The power law profile is assumed to model the axi-symmetric pipe flow and its results are compared with the present weighting factor concept. For an asymmetric pipe flow, the Salami flow model is applied to obtain the velocity profiles. These theoretical methods are also compared with the previous Gaussian, Chebyshev, and Tailor methods. The results obtained show that for the fully developed turbulent pipe flows with surface roughness effects, the present weighting factor method is much less sensitive than Chebyshev and Tailor methods, leading to a better reliability in flow rate measurement using the ultrasonic flow meters.

  • PDF

A study on the wake characteristics of rim-driven propeller for underwater robot using the PIV (PIV를 이용한 수중로봇용 림 추진기 후류 특성에 관한 연구)

  • LEE, Chang-Je;HEO, Min-Ah;CHO, Gyeong-Rae;KIM, Hyoung-Ho
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.58 no.1
    • /
    • pp.68-74
    • /
    • 2022
  • This study analyzed the wake characteristics of the rim-driven propeller (RDP) used in an underwater robot. For underwater robots to perform specific missions, not only propulsion characteristics but also wake characteristics must be considered. In this study, a blade was designed based on NAC 0012 with a symmetrical cross-section. The RDP was hubless with three or four blades. The influence of both the free water surface and the bottom was considered, and the wake was measured using a particle image velocimetry in the advance ratio of 0.2 to 1. Model 1 showed symmetrical wakes in the entire advance ratio section. Model 2 showed asymmetric wakes due to the influence of the free water surface and the bottom at low advance ratio.

Study on Variation of Local Atmospheric Circulation Due to Road Development in Mountain Area (산악지역 도로건설에 따른 국지 대기순환의 변화에 관한 연구)

  • Hwang, Soo-Jin;Seo, Kwang-Soo;Lee, Soon-Hwan
    • Journal of the Korean earth science society
    • /
    • v.25 no.2
    • /
    • pp.94-108
    • /
    • 2004
  • In order to clarify the efficiency of ground level change in Ice-valley on atmospheric circulation, numerical experiment was carried out. The circulations over the slope in North and South are different due to the topography and short wave radiation in Ice-valley. Therefore the circulations in both side are asymmetric and the asymmetric circulations are kept on at 1800 LST. A small difference of the atmospheric circulations formation is made due to the road construction at night. The reason may be the weakness of sensible heat flux from the road and other factors except that the sensible heat is not a principal factor in road construction. The construction of road is associated with growing of sensible heat from the road surface. For this reason, in case of daytime, ascending wind in north slope is more stronger with the road than that without road. The maximum wind speed becomes 4.67 m/s after road construction. And the position of the road is also an important factor in estimation of mesoscale circulation in mountainous area.

Detection of an Impact Flash Candidate on the Moon with an Educational Telescope System

  • Kim, Eunsol;Kim, Yong Ha;Hong, Ik-Seon;Yu, Jaehyung;Lee, Eungseok;Kim, Kyoungja
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.2
    • /
    • pp.121-125
    • /
    • 2015
  • At the suggestion of the NASA Meteoroid Environment Office (NASA/MEO), which promotes lunar impact monitoring worldwide during NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) mission period (launched Sept. 2013), we set up a video observation system for lunar impact flashes using a 16-inch educational telescope at Chungnam National University. From Oct. 2013 through Apr. 2014, we recorded 80 hours of video observation of the unilluminated part of the crescent moon in the evening hours. We found a plausible candidate impact flash on Feb. 3, 2014 at selenographic longitude $2.1^{\circ}$ and latitude $25.4^{\circ}$. The flash lasted for 0.2 s and the light curve was asymmetric with a slow decrease after a peak brightness of $8.7{\pm}0.3mag$. Based on a star-like distribution of pixel brightness and asymmetric light curve, we conclude that the observed flash was due to a meteoroid impact on the lunar surface. Since unequivocal detection of an impact flash requires simultaneous observation from at least two sites, we strongly recommend that other institutes and universities in Korea set up similar inexpensive monitoring systems involving educational or amateur telescopes, and that they collaborate in the near future.

Fiber Orientation and Warpage of Film Insert Molded Parts with Glass Fiber Reinforced Substrate (유리섬유가 강화된 필름 삽입 사출품의 섬유배향 및 휨)

  • Kim, Seong-Yun;Kim, Hyung-Min;Lee, Doo-Jin;Youn, Jae-Ryoun;Lee, Sung-Hee
    • Composites Research
    • /
    • v.25 no.4
    • /
    • pp.117-125
    • /
    • 2012
  • Warpage of the film insert molded (FIM) part is caused by an asymmetric residual stress distribution. Asymmetric residual stress and temperature distribution is generated by the retarded heat transfer in the perpendicular direction to the attached film surface. Since warpage was not prevented by controlling injection molding conditions, glass fiber (GF) filled composites were employed as substrates for film insert molding to minimize the warpage. Distribution of short GFs was evaluated by using micro-CT equipment. Proper models for micro mechanics, anisotropic thermal expansion coefficients, and closure approximation should be selected in order to calculate fiber orientation tensor and warpage of the FIM part with the composite substrate. After six kinds of micro mechanics models, three models of the thermal expansion coefficient and five models of the closure approximation had been considered, the Mori-Tanaka model, the Rosen and Hashin model, and the third orthotropic closure approximation were selected in this study. The numerically predicted results on fiber orientation tensor and warpage were in good agreement with experimental results and effects of GF reinforcement on warpage of the FIM composite specimen were identified by the numerical results.

Typhoon Surge Simulation on the West Coast Incorporating Asymmetric Vortex and Wave Model on a Fine Finite Element Grid (상세유한요소격자에서 비대칭 경도풍과 파랑모형이 고려된 서해안의 태풍해일모의)

  • Suh, Seung-Won;Kim, Hyeon-Jeong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.3
    • /
    • pp.166-178
    • /
    • 2012
  • In order to simulate storm surge for the west coast, complex physics of asymmetrical typhoon wind vortex, tide and wave are simultaneously incorporated on a fine finite element mesh extended to the North Western Pacific sea. Asymmetrical vortex based on maximum wind radii for each quadrant by JTWC's best tracks are input in pADCIRC and wave stress is accounted by dynamic coupling with unSWAN. Computations performed on parallel clusters. In hindcasting simulation of typhoon Kompasu(1007), model results of wave characteristic are very close with the observed data at Ieo island, and sea surface records at major tidal stations are reproduced with satisfaction when typhoon is approaching to the coast. It is obvious that increasing of local storm surges can be found by introducing asymmetrical vortex. Thus this approach can be satisfactorily applied in coastal hazard management against to storm surge inundation on low level area and major harbor facilities.

A Study on Improvement of Roll Autopilot System (가로축 자동비행시스템 개선에 관한 연구)

  • Kim, Chong-Sup;Koh, Gi-Oak;Ji, Chang-Ho;Cho, In-Je;Lee, Dong-Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.8
    • /
    • pp.706-711
    • /
    • 2015
  • The fighter aircraft uses several different loading configurations for air-to-surface and air-to-air combat missions. To maintain wings-level flight with an asymmetric weapon configuration, a pilot controls a roll trim system. However, it is difficult to apply an accurate roll trim input for wings-level flight in the actual flight under disturbance. The inaccurate roll trim input degrades the performance of the roll autopilot system. In this paper, to solve this problem, an integrator was additionally designed in the command part of the roll autopilot system. The initial transient response was improved by scheduling the limiter to restrict the roll attitude error. As a result of the evaluation of the simulation for the designed flight control law, the roll attitude following performance was found to be improved in the autopilot system operation under the inaccurate roll trim condition.

Membrane and Virus Filter Trends in the Processes of Biopharmaceutical Production (바이오의약품 제조공정에서 분리막의 역할과 바이러스 필터 동향)

  • Choi, Tae Hwan;Park, Ho Bum
    • Membrane Journal
    • /
    • v.30 no.1
    • /
    • pp.9-20
    • /
    • 2020
  • Membranes are used in most processes of biopharmaceutical production. It is used for pretreatment of other processes, separation of impurities in the process, virus removal, control of products concentration and buffer solution exchange. Virus filters play an important role in ensuring product efficacy and stability because viral contamination of biopharmaceuticals for humans is a sensitive issue that is directly related to serious clinical outcomes. Virus filters typically have complex multilayer structures made of various polymers such as surface-modified PVDF, PES, CRC. Depending on the manufacturer, filters have different pore structures and shapes, such as symmetric or asymmetric, and is used in the form of pleated membrane, flat sheets or hollow fibers. Virus filters are exclusively supplied by few foreign companies such as Asahi Kasei, Millipore, Pall and Sartorius. Replacing virus filters can be time consuming and expensive, including approval from regulatory agencies through validation. As localization has become important due to Japan's recent export regulations, it is necessary to increase the degree of technical independence.

Yield Functions Based on the Stress Invariants J2 and J3 and its Application to Anisotropic Sheet Materials (J2 와 J3 불변량에 기초한 항복함수의 제안과 이방성 판재에의 적용)

  • Kim, Y.S;Nguyen, P.V.;Kim, J.J.
    • Transactions of Materials Processing
    • /
    • v.31 no.4
    • /
    • pp.214-228
    • /
    • 2022
  • The yield criterion, or called yield function, plays an important role in the study of plastic working of a sheet because it governs the plastic deformation properties of the sheet during plastic forming process. In this paper, we propose a novel anisotropic yield function useful for describing the plastic behavior of various anisotropic sheets. The proposed yield function includes the anisotropic version of the second stress invariant J2 and the third stress invariant J3. The anisotropic yield function newly proposed in this study is as follows. F(J2)+ αG(J3)+ βH (J2 × J3) = km The proposed yield function well explains the anisotropic plastic behavior of various sheets by introducing the parameters α and β, and also exhibits both symmetrical and asymmetrical yield surfaces. The parameters included in the proposed model are determined through an optimization algorithm from uniaxial and biaxial experimental data under proportional loading path. In this study, the validity of the proposed anisotropic yield function was verified by comparing the yield surface shape, normalized uniaxial yield stress value, and Lankford's anisotropic coefficient R-value derived with the experimental results. Application for the proposed anisotropic yield function to aluminum sheet shows symmetrical yielding behavior and to pure titanium sheet shows asymmetric yielding behavior, it was shown that the yield curve and yield behavior of various types of sheet materials can be predicted reasonably by using the proposed new yield anisotropic function.

GLOBAL Hɪ PROPERTIES OF GALAXIES VIA SUPER-PROFILE ANALYSIS

  • Kim, Minsu;Oh, Se-Heon
    • Journal of The Korean Astronomical Society
    • /
    • v.55 no.5
    • /
    • pp.149-172
    • /
    • 2022
  • We present a new method which constructs an Hɪ super-profile of a galaxy which is based on profile decomposition analysis. The decomposed velocity profiles of an Hɪ data cube with an optimal number of Gaussian components are co-added after being aligned in velocity with respect to their centroid velocities. This is compared to the previous approach where no prior profile decomposition is made for the velocity profiles being stacked. The S/N improved super-profile is useful for deriving the galaxy's global Hɪ properties like velocity dispersion and mass from observations which do not provide sufficient surface brightness sensitivity for the galaxy. As a practical test, we apply our new method to 64 high-resolution Hɪ data cubes of nearby galaxies in the local Universe which are taken from THINGS and LITTLE THINGS. In addition, we also construct two additional Hɪ super-profiles of the sample galaxies using symmetric and all velocity profiles of the cubes whose centroid velocities are determined from Hermite h3 polynomial fitting, respectively. We find that the Hɪ super-profiles constructed using the new method have narrower cores and broader wings in shape than the other two super-profiles. This is mainly due to the effect of either asymmetric velocity profiles' central velocity bias or the removal of asymmetric velocity profiles in the previous methods on the resulting Hɪ super-profiles. We discuss how the shapes (𝜎n/𝜎b, An/Ab, and An/Atot) of the new Hɪ super-profiles which are measured from a double Gaussian fit are correlated with star formation rates of the sample galaxies and are compared with those of the other two super-profiles.