Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.1.9

Membrane and Virus Filter Trends in the Processes of Biopharmaceutical Production  

Choi, Tae Hwan (Department of Energy Engineering, Hanyang University)
Park, Ho Bum (Department of Energy Engineering, Hanyang University)
Publication Information
Membrane Journal / v.30, no.1, 2020 , pp. 9-20 More about this Journal
Abstract
Membranes are used in most processes of biopharmaceutical production. It is used for pretreatment of other processes, separation of impurities in the process, virus removal, control of products concentration and buffer solution exchange. Virus filters play an important role in ensuring product efficacy and stability because viral contamination of biopharmaceuticals for humans is a sensitive issue that is directly related to serious clinical outcomes. Virus filters typically have complex multilayer structures made of various polymers such as surface-modified PVDF, PES, CRC. Depending on the manufacturer, filters have different pore structures and shapes, such as symmetric or asymmetric, and is used in the form of pleated membrane, flat sheets or hollow fibers. Virus filters are exclusively supplied by few foreign companies such as Asahi Kasei, Millipore, Pall and Sartorius. Replacing virus filters can be time consuming and expensive, including approval from regulatory agencies through validation. As localization has become important due to Japan's recent export regulations, it is necessary to increase the degree of technical independence.
Keywords
virus filter; virus removal; bioprocess membrane separation; down-stream; biopharmaceutical production;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Brough, C. Antoniou, J. Carter, J. Jakubik, Y. Xu, and H. Lutz, "Performance of a novel viresolve NFR virus filter", Biotechnol. Prog., 18, 782 (2002).   DOI
2 https://www.merckmillipore.com/KR/ko/, February 25 (2020).
3 K. Tarrach, A. Meyer, J. E. Dathe, and H. Sun, "The effect of flux decay on a 20 nm nanofilter for virus retention", Biopharm Int., 20, 58 (2007).
4 https://www.sartorius.com, February 25 (2020).
5 S. Emory, "Principles of integrity testing hydrophilic microporous membranes", Pharm. Technol., 13, 68 (1989).
6 A. Depalma, "Making Filtration Work", Bioprocess Int., 17, 4 (2019).
7 J. Bartels, A. G. Batista, S. Kroll, M. Maas, and K. Rezwan, "Hydrophobic ceramic capillary membranes for versatile virus filtration", J. Membr. Sci., 570-571, 85 (2019).   DOI
8 "Regulations on Product Approval and Examination of Biological Products", MFDS (2019).
9 "Overview of Biological Products", FDA (CDER) (2013).
10 "Biopharmaceutical Industry Trend Report", KoBIA (2018).
11 D. B. Yim, "Biopharmaceutical Market Opportunity and Global Competitiveness", Samjong KPMG ERI Co., 59 (2016).
12 P. Roberts, "Virus safety in bio products", J. Chem. Technol. Biotechnol., 59(1), 110 (1994).   DOI
13 "Points to consider in the manufacture and testing of monoclonal antibody products for human use, department of health and human services", FDA (CBER) (1996).
14 "Guidance for industry: Q5A viral safety evaluation of biotechnology products derived from cell lines of human or animal origin", ICH (1999).
15 M. Bakhshayeshirad, "Performance characteristics of virus filtration membranes: Protein fouling and virus retention", Penn State Univ. (2011).
16 S. Liu, M. Carroll, R. Iverson, C. Valera, J. Vennari, K. Turco, R. Piper, R. Kiss, and H. Lutz, "Development and qualification of a novel virus removal filter for cell culture applications", Biotechnol. Prog., 16, 425 (2000).   DOI
17 "Guideline on validation of biopharmaceuticals manufacture processes", MFDS (2016).
18 A. S. Rathore and A. Shirke, "Recent developments in membrane-based separations in biotechnology processes: Review", Prep. Biochem. Biotechnol., 41, 398 (2011).   DOI
19 A. A. Shukla, M. R. Etzel, and S. Gadam, "Process Scale Bioseparation for the Biopharmaceutical Industry", Taylor & Francis, New York, NY, 297 (2007).
20 W. P. Olson, "Separations Technology: Pharmaceutical and Biotechnology Applications", Interpharm Press, Buffalo Grove, IL, 122 (1995).
21 R. V. Reis and A. Zydney, "Bioprocess membrane technology", J. Membr. Sci., 297, 16 (2007).   DOI
22 M. A. Serabian and A. M. Pilaro, "Safety assessment of biotechnology -derived pharmaceuticals: ICH and beyond", Toxicol. Pathol., 27, 27 (1999).   DOI
23 A. S. Rosenberg, "Effects of protein aggregates: An immunologic perspective", AAPS J., 8, 501 (2006).   DOI
24 "Guideline on assessing virus stability of biotechnology products from cell lines", MFDS (2002).
25 D. Gail, "QA/QC for viral clearance", Genetic Engineering & Biotechnology News (www.genengnews.com), 26 (2006).
26 S. Chandra, A. Groener, and F. Feldman, "Effectiveness of alternative treatments for reducing potential viral contaminants from plasma-derived products", Thromb Res., 105, 391 (2002).   DOI
27 P. Roberts, "Resistance of vaccinia virus to inactivation by solvent/detergent treatment of blood products", Biologicals, 28, 29 (2000).   DOI
28 J. L. Lundblad and R. L. Seng, "Inactivation of lipid-enveloped viruses in proteins by caprylate", Vox Sang., 60, 75 (1991).   DOI
29 F. Brown, "An overview of the inactivation of FMDV and the implications when residual virus is present in vaccines", Dev. Biol. Stand., 75, 37 (1991).
30 M. F. Bachmann, T. M. Kundig, C. P. Kalberer, H. Hengartner, and R. M. Zinkernagel, "Formalin inactivation of vesicular stomatitis virus impairs T-cell but not T-help-independent B-cell responses", J. Virol., 67, 3917 (1993).   DOI
31 A. Scheidler, K. Rokos, T. Reuter, R. Ebermann, and G. Pauli, "Inactivation of viruses by beta-propiolactone in human cryo poor plasma and IgG concentrates", Biologicals, 26, 135 (1998).   DOI
32 W. R. Alonso, S. Trukawinski, M. Savage, R. A. Tenold, and D. J. Hammond, "Viral inactivation of intramuscular immune serum globulins", Biologicals, 28, 5 (2000).   DOI
33 S. A. Lawrence, "Beta-propiolactone: Viral inactivation in vaccines and plasma products", PDA J. Pharm. Sci. Technol., 54, 209 (2000).
34 M. Korneyeva, J. Hotta, W. Lebing, R. S. Rosenthal, L. Franks, and S. R. Petteway Jr, "Enveloped virus inactivation by caprylate: A robust alternative to solvent-detergent treatment in plasma derived intermediates", Biologicals, 30, 153 (2002).   DOI
35 H. Dichtelmuller, D. Rudnick, and M. Kloft, "Inactivation of lipid enveloped viruses by octanoic acid treatment of immunoglobulin solution", Biologicals, 30, 135 (2002).   DOI
36 Parenteral Drug Association (PDA), "PDA Technical Report No. 41: Virus filtration", PDA J. Pharm. Sci. Technol., 59 (2005).
37 M. Azari, J. A. Boose, K. E. Burhop, T. Camacho, J. Catarello, A. Darling, A. A. Ebeling, T. N. Estep, L. Pearson, S. Guzder, J. Herren, K. Ogle, J. Paine, K. Rohn, R. Sarajari, C. S. Sun, and L. Zhang, "Evaluation and validation of virus removal by ultrafiltration during the production of diaspirin crosslinked haemoglobin (DCLHb)", Biologicals, 28, 81 (2000).   DOI
38 T. Urase, K. Yamamoto, and S. Ohgaki, "Effect of pore structure of membranes and module configuration on virus retention", J. Membr. Sci., 115, 21 (1996).   DOI
39 K. Furuya, K. Murai, T. Yokoyama, H. Maeno, Y. Takeda, T. Murozuka, A. Wakisaka, M. Tanifuji and T. Tomono, "Implementation of a 20-nm pore-size filter in the plasma-derived Factor VIII manufacturing process", Vox Sang., 91, 119 (2006).   DOI
40 I. Laursen, G. Houen, P. Hojrup, N. Brouwer, L. B. Krogsoe, L. Blou, and P. R. Hansen, "Second-generation nanofiltered plasma-derived mannan-binding lectin product: Process and characteristics", Vox Sang., 92, 338 (2007).   DOI
41 T. R. Kreil, A. Wieser, A. Berting, M. Spruth, C. Medek, G. Pölsler, T. Gaida, T. Hämmerle, W. Teschner, H. P. Schwarz, and P. N. Barrett, "Removal of small nonenveloped viruses by antibody-enhanced nanofiltration during the manufacture of plasma derivatives", Transfusion, 46, 1143 (2006).   DOI
42 T. Burnouf and M. Radosevich, "Nanofiltration of plasma-derived biopharmaceutical products", Haemophilia, 9, 24 (2003).   DOI
43 A. Johnston, A. MacGregor, S. Borovec, M. Hattarki, K. Stuckly, D. Anderson, N. H. Goss, A. Oates, and E. Uren, "Inactivation and clearance of viruses during the manufacture of high purity factor IX", Biologicals, 28, 129 (2000).   DOI
44 K. H. Oshima, T. T. Evans-Strickfaden, and A. K. Highsmith, "Comparison of filtration properties of hepatitis B virus, hepatitis C virus and simian virus 40 using a polyvinylidene fluoride membrane filter", Vox Sang., 75, 181 (1998).   DOI
45 https://planova.ak-bio.com, February 25 (2020).
46 K. H. Oshima, T. W. Comans, A. K. Highsmith, and E. W. Ades, "Removal of human immunodeficiency virus by an 0.04-micron membrane filter", J. Acquir. Immune Defic. Syndr. Hum. Retrovirol., 8, 64 (1995).
47 K. H. Oshima, "Evans-Strickfaden T. T., Highsmith A. K., Ades E. W., The use of a microporous polyvinylidene fluoride (PVDF) membrane filter to separate contaminating viral particles from biologically important proteins", Biologicals, 24, 137 (1996).   DOI
48 H. Aranha-Creado, K. Oshima, S. Jafari, G. Howard, and H. Brandwein, "Virus retention by a hydrophilic triple-layer PVDF microporous membrane filter", PDA J. Pharm. Sci. Technol., 51, 119 (1997).
49 H. Aranha-Creado, J. Peterson, and P. Y. Huang, "Clearance of murine leukaemia virus from monoclonal antibody solution by a hydrophilic PVDF microporous membrane filter", Biologicals, 26, 167 (1998).   DOI
50 G. Miesegaes, S. Lute, H. Aranha, and K. Brorson, "Virus retentive filters", in: M. C. Flickinger(Ed.), Encyclopedia of Industrial Biotechnology, Bioprocess, Bioseparation, and Cell Technology, Wiley, New York, USA (2010)
51 https://shop.pall.com/us/en/biotech/filtration, February 25 (2020).
52 A. DiLeo, A. Allegrezza, and S. Builder, "High resolution removal of virus from protein solutions using a membrane of unique structure", Nat. Biotechnol., 10, 182 (1992).   DOI
53 A. J. DiLeo, D. A. Vacante, E, and F. Deane, "Size exclusion removal of model mammalian viruses using a unique membrane system, Part I: Membrane qualification", Biologicals, 21, 275 (1993).   DOI
54 A. J. DiLeo, D. A. Vacante, E, and F. Deane, "Size exclusion removal of model mammalian viruses using a unique membrane system, Part II: Model qualification and process simulation", Biologicals, 21, 287 (1993).   DOI
55 B. Hughes, A. Bradburne, A. Sheppard, and D. Young, "Evaluation of anti-viral filters", Dev. Biol. Stand., 88, 91 (1996).
56 J. Parkkinen, A. Rahola, L. von Bonsdorff, H. Tolo, and E. Torma, "A modified caprylic acid method for manufacturing immunoglobulin G from human plasma with high yield and efficient virus clearance", Vox Sang., 90, 97 (2006).   DOI
57 I. S. Kim, Y. W. Choi, Y. Kang, H. M. Sung, K. W. Sohn, and Y. S. Kim, "Improvement of virus safety of an antihemophilc factor IX by virus filtration process", J. Microbiol. Biotechnol., 18, 1317 (2008).
58 J. X. Zhou, F. Solamo, T. Hong, M. Shearer, and T. Tressel, "Viral clearance using disposable systems in monoclonal antibody commercial downstream processing", Biotechnol. Bioeng., 100, 488 (2008).   DOI