• Title/Summary/Keyword: Asymmetric Effects

Search Result 422, Processing Time 0.024 seconds

Effects of Duty Cycle and Pulse Frequency on the Microstructure and Mechanical Properties of TiAlN Coatings (듀티 싸이클 및 펄스 주파수가 TiAlN 코팅막의 미세구조와 기계적 특성에 미치는 영향에 관한 연구)

  • Chun, Sung-Yong;Hwang, Ju Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.447-452
    • /
    • 2014
  • This paper presents the effects of pulse plasma parameters such as duty cycle and pulse frequency on the properties of TiAlN coatings deposited by asymmetric bipolar pulsed DC magnetron sputtering systems. The results show that, with decreasing duty cycle and increasing pulse frequency, the coating morphology changes from a columnar structure to a dense structure with finer grains. Pulsed sputtered TiAlN coatings showed higher hardness, higher residual stress, and smaller grain sizes than did DC prepared TiAlN coatings. Moreover, residual stress and nanoindentation hardness of pulsed sputtered TiAlN coatings increased with increasing pulse frequency. Meanwhile, the surface roughness decreased continuously with increasing pulsed DC frequency up to 50 kHz.

Shear Texture Development and Grain Refinement in Asymmetrically Rolled Aluminum Alloy Sheets : Effects of Shear Combinations (비대칭압연한 알루미늄합금판재의 전단집합조직발달과 결정립미세화 : 전단변형 조합의 영향)

  • 이종국;이동녕
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.132-135
    • /
    • 2003
  • Asymmetric rolling, in which the ratio of the rotation rates of the upper and lower rolls was 2, has been used to introduce an intense plastic shear strain for the purpose of grain refinement and developing shear deformation textures through the sheet thickness to improve the strength and plastic strain ratio of AA1050 aluminum alloy sheets. The alloy sheets were rolled at room temperature without lubrication. The textures and microstructures of the sheets were investigated by x-ray diffraction and electron back-scattered diffraction (EBSD) analyses with emphasis on effects of combinations of rot ling directions.

  • PDF

Characteristic Analysis of a Linear Induction Motor considering Static and Dynamic End Effect (정적 및 동적 단부효과를 고려한 선형유도전동기의 특성 해석)

  • Kim, Dae-Kyong;Kwon, Byung-Il;Woo, Kyung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.981-983
    • /
    • 2000
  • Linear induction motors have static and dynamic end effects due to its finite core length, so that per-phase impedances are asymmetric and the air gap flux distribution is distorted. Because of these points the d-q equivalent circuit model considering both end effects has not been exactly completed. So this paper proposes a characteristic analysis method considering both static and dynamic end effect of the LIM. This method is to utilize asymmetric d-q equivalent circuit model with dynamic end effect coefficient. As a result, it is shown that the simulation results have a good agreement with experimental ones.

  • PDF

Effects of seed geometry on the crystal growth and the magnetic properties of single grain REBCO bulk superconductors

  • Lee, Hwi-Joo;Park, Soon-dong;Jun, Bung-Hyuck;Kim, Chan-Joong;Lee, Hee-Gyoun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.3
    • /
    • pp.33-39
    • /
    • 2017
  • This study presents that the orientation and the geometry of seed affect on the growth behavior of melt processed single grain REBCO bulk superconductor and its magnetic properties. The effects of seed geometry have been investigated for thin $30mm{\times}30mm$ rectangular powder compacts. Single grain REBCO bulk superconductors have been grown successfully by a top seed melt growth method for 8-mm thick vertical thin REBCO slab. Asymmetric structures have been developed at the front surface and at the rear surface of the specimen. Higher magnetic properties have been obtained for the specimen that c-axis is normal to the specimen surface. The relationships between microstructure, grain growth and magnetic properties have been discussed.

The Empirical Information Spillover Effect between the Housing Market and the Stock Market (주택시장과 주식시장 간의 정보 이전효과의 연구)

  • Choi, Chasoon
    • Land and Housing Review
    • /
    • v.12 no.3
    • /
    • pp.27-37
    • /
    • 2021
  • This paper empirically examined the relationship between the housing market and the stock market to investigate the price and the asymmetric volatility spillover effects. The monthly housing price index and the monthly KOSPI were used for analysis. This research employed the EGARCH model. The analysis period was from January 1986 until June 2021 with periodization centered on the Asian Financial Crisis: before and after the crisis - the end of December 1997. The EGARCH model allows analysis of 'good news' and 'bad news' in understanding volatility. The price spillover effect was observed one way from the stock market to the housing market. On the contrary, the spillover effect was not found from the housing market to the stock market. The empirical evidence suggests that there are price and asymmetric volatility effects in the entire period of analysis in both housing and the stock markets. In the housing market, the negative effects of information were found pre-financial crisis while the positive effects, in other periods. However, in the stock market, the negative effects of information were found in the pre- and post-financial crisis periods. This means that the housing market is more affected by 'good news' than 'bad news' when information spreads to the markets while the stock market is more affected by 'bad news' than 'good news'. It is of significance to discover the variable returns by different information.

Asymmetric Impacts of Oil Price Uncertainty on Industrial Stock Market -A Quantile Regression Approach - (분위수회귀분석을 이용한 유가 변동성에 대한 산업별 주식시장의 이질적 반응 분석)

  • Joo, Young-Chan;Park, Sung-Yong
    • Management & Information Systems Review
    • /
    • v.38 no.3
    • /
    • pp.1-19
    • /
    • 2019
  • This paper investigates the asymmetric effects of crude oil price uncertainty on industrial stock returns under different market conditions (bearish and bullish stock markets). We consider a quantile regression method using monthly oil volatility index, KOSPI and 22 industrial stock indices from May 2007 to February 2019. Especially, we take care of the positive and negative changes of the oil volatility index to analyze asymmetric effects of the oil price uncertainty for the bearish and bullish stock market conditions. During the bearish markets, the oil volatility index has relatively strong statistically significant negative effects on the industrial stock returns. These effects gradually decrease when the market conditions became more bullish markets. In particular, positive changes in the oil volatility index yields a further significant decrease in 12 industrial stock returns during the extreme bearish markets. Moreover, during the bullish markets, negative changes in the oil volatility index have statistically significant negative effects on the 12 industrial stock returns. From the empirical results, we see that participants of the Korean stock market are sensitive to bad news in a recession.

Modal Analysis of the Bell Type Shell with Thickness and Asymmetric Effects (鐘形셀의 두께變化 및 非對稱效果에 따른 振動모우드 解析에 관한 硏究)

  • 정석주;공창덕;염영하
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.3
    • /
    • pp.383-391
    • /
    • 1986
  • Mode shapes and natural frequencies of the bell type shell are analyzed numerically by the finite element method. The impulse hammer method and the Fast Fourier Transform analyzer are used for the experimental test. All types of mode shapes are expressed by the computer graphics. Numerical solutions are good agreement with the experimental results. The sustaining sound of the typical bell-type shell depend upon the first flexural mode (0-2 mode) and the second flexural mode (0-3 mode), and their mode shapes are independent upon thickness Dangjwas, holes, and added mass effects. Asymmetric effects by Dangjwas, holes and added mass give rise to beat frequencies, and the added mass is found to be most effective.

The Asymmetric Effect of Oil Price Shocks on Economic Growth and Real Exchange Rate in Saudi Arabia

  • BEN DHIAB, Lassad;CHEBBI, Taha;ALIMI, Nabil
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.12
    • /
    • pp.295-303
    • /
    • 2021
  • The aim of this study is to analyze the effects of oil prices on economic growth and exchange rate in Saudi Arabia during the period 1980-2020. For this purpose, the linear and nonlinear ARDL models are estimated. The linear ARDL model shows that the oil price and economic growth are cointegrated. Moreover, the two variables have a significant positive association in the long run. However, the oil price has no significant impact on the exchange rate. When estimating the nonlinear ARDL model, it has been shown that oil price is only cointegrated with economic growth but not with the exchange rate. The estimation of nonlinear effects using the nonlinear ARDL model shows that economic growth is affected by both positive and negative oil shocks in the long run. However, the impact of positive shocks is higher than those of negative shocks. Moreover, results show that the short-run effects of positive and negative oil shocks are not statistically significant. Regarding the exchange rate, our results show that the effects of positive and negative oil shocks are not statistically significant. Consequently, this study concludes that the oil price has an asymmetric effect on economic growth in Saudi Arabia, but not on the exchange rate.

Dependence of Drain Induced Barrier Lowering for Ratio of Channel Length vs. Thickness of Asymmetric Double Gate MOSFET (비대칭 DGMOSFET에서 채널길이와 두께 비에 따른 DIBL 의존성 분석)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.6
    • /
    • pp.1399-1404
    • /
    • 2015
  • This paper analyzed the phenomenon of drain induced barrier lowering(DIBL) for the ratio of channel length vs. thickness of asymmetric double gate(DG) MOSFET. DIBL, the important secondary effect, is occurred for short channel MOSFET in which drain voltage influences on potential barrier height of source, and significantly affects on transistor characteristics such as threshold voltage movement. The series potential distribution is derived from Poisson's equation to analyze DIBL, and threshold voltage is defined by top gate voltage of asymmetric DGMOSFET in case the off current is 10-7 A/m. Since asymmetric DGMOSFET has the advantage that channel length and channel thickness can significantly minimize, and short channel effects reduce, DIBL is investigated for the ratio of channel length vs. thickness in this study. As a results, DIBL is greatly influenced by the ratio of channel length vs. thickness. We also know DIBL is greatly changed for bottom gate voltage, top/bottom gate oxide thickness and channel doping concentration.

Influence of Ratio of Top and Bottom Oxide Thickness on Subthreshold Swing for Asymmetric Double Gate MOSFET (비대칭 이중게이트 MOSFET에서 상단과 하단 산화막 두께비가 문턱전압이하 스윙에 미치는 영향)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.3
    • /
    • pp.571-576
    • /
    • 2016
  • Asymmetric double gate(DG) MOSFET has the different top and bottom gate oxides thicknesses. It is analyzed the deviation of subthreshold swing(SS) and conduction path for the ratio of top and bottom gate oxide thickness of asymmetric DGMOSFET. SS varied along with conduction path, and conduction path varied with top and bottom gate oxide thickness. The asymmetric DGMOSFET became valuable device to reduce the short channel effects like degradation of SS. SSs were obtained from analytical potential distribution by Poisson's equation, and it was analyzed how the ratio of top and bottom oxide thickness influenced on conduction path and SS. SSs and conduction path were greatly influenced by the ratio of top and bottom gate oxide thickness. Bottom gate voltage cause significant influence on SS, and SS are changed with a range of 200 mV/dec for $0<t_{ox2}/t_{ox1}<5$ under bottom voltage of 0.7 V.