• Title/Summary/Keyword: Asymmetric Dependence

Search Result 52, Processing Time 0.031 seconds

Experimental analysis of an asymmetric reinforced concrete bridge under vehicular loads

  • Thambiratnam, D.P.;Brameld, G.H.;Memory, T.J.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.1
    • /
    • pp.17-35
    • /
    • 2000
  • Dynamic response of a three span continuous bridge has been determined by full scale experiments on the bridge. In the experiments, a heavy vehicle was driven across the bridge at different speeds and along different lanes of travel and the strains were recorded at different locations. The bridge was made of reinforced concrete and was asymmetric in plan and in elevation. Frequencies and modes of vibration excited by the vehicle were determined. The dependence of the dynamic amplification on bridge location and vehicle speed was investigated and dynamic amplifications up to 1.5 were recorded, which was higher than values predicted by bridge design codes. It was evident that when this asymmetric bridge was loaded by an asymmetric forcing function, higher modes, which are lateral and/or torsional in nature, were excited. Dynamic modulus of elasticity and the support stiffness influenced the natural frequencies of the bridge, which in turn influenced the dynamic amplifications. Larger than anticipated dynamic amplification factors and the excitation of lateral and/or torsional modes should be of interest and concern to bridge engineers.

Dependence of Channel Doping Concentration on Drain Induced Barrier Lowering for Asymmetric Double Gate MOSFET (비대칭 이중게이트 MOSFET에 대한 DIBL의 채널도핑농도 의존성)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.4
    • /
    • pp.805-810
    • /
    • 2016
  • The dependence of drain induced barrier lowering(DIBL) is analyzed for doping concentration in channel of asymmetric double gate(DG) MOSFET. The DIBL, the important short channel effect, is described as lowering of source barrier height by drain voltage. The analytical potential distribution is derived from Poisson's equation to analyze the DIBL, and the DIBL is observed according to top/bottom gate oxide thickness and bottom gate voltage as well as channel doping concentration. As a results, the DIBL is significantly influenced by channel doping concentration. DIBL is significantly increased by doping concentration if channel length becomes under 25 nm. The deviation of DIBL is increasing with increase of oxide thickness. Top and bottom gate oxide thicknesses have relation of an inverse proportion to sustain constant DIBL regardless channel doping concentration. We also know the deviation of DIBL for doping concentration is changed according to bottom gate voltage.

Dependence of Drain Induced Barrier Lowering for Ratio of Channel Length vs. Thickness of Asymmetric Double Gate MOSFET (비대칭 DGMOSFET에서 채널길이와 두께 비에 따른 DIBL 의존성 분석)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.6
    • /
    • pp.1399-1404
    • /
    • 2015
  • This paper analyzed the phenomenon of drain induced barrier lowering(DIBL) for the ratio of channel length vs. thickness of asymmetric double gate(DG) MOSFET. DIBL, the important secondary effect, is occurred for short channel MOSFET in which drain voltage influences on potential barrier height of source, and significantly affects on transistor characteristics such as threshold voltage movement. The series potential distribution is derived from Poisson's equation to analyze DIBL, and threshold voltage is defined by top gate voltage of asymmetric DGMOSFET in case the off current is 10-7 A/m. Since asymmetric DGMOSFET has the advantage that channel length and channel thickness can significantly minimize, and short channel effects reduce, DIBL is investigated for the ratio of channel length vs. thickness in this study. As a results, DIBL is greatly influenced by the ratio of channel length vs. thickness. We also know DIBL is greatly changed for bottom gate voltage, top/bottom gate oxide thickness and channel doping concentration.

In the middle of a perfect storm: political risks of the Belt and Road project at Kyaukphyu, Myanmar

  • Morris, David
    • Journal of Contemporary Eastern Asia
    • /
    • v.20 no.2
    • /
    • pp.210-236
    • /
    • 2021
  • China's Belt and Road Initiative infrastructure connectivity and other projects are presented in much of the discourse as a grand strategy to trap developing nations in debt, to exert asymmetric power and construct a new world economic order. The asymmetric relationship between China and Myanmar might therefore be expected to generate a range of political risks for stakeholders. Myanmar itself presents a "perfect storm" of problems, with dysfunctional governance, civil conflict, under-development and growing economic dependence on China. The Kyaukphyu port project and associated Special Economic Zone in Myanmar's troubled Rakhine state is investigated as a case study of risks on the Belt and Road. While worst case fears China might seize military control of the port appear unlikely, at least in current conditions, empirical observation indicates the complexity on the ground generates an array of other risks - as well as opportunities, should conditions allow. Further, despite challenges and constrained capacity, Myanmar governments have demonstrated agency, including by re-negotiating control and costs of the Kyaukphyu project. The case underlines that conditions are more complicated than simply China's asymmetric power. A sceptical approach is taken to normative discourses in order to build inductive understanding of how stakeholders and local experts perceive dynamics underway. A political risk approach is deployed to develop a framework to identify, analyse and assess risks for actors in relation to the Kyaukphyu project. The research findings are presented on an interim basis, given current constraints on field interviews due to the current crisis.

Proposal for a Wavelength-Independent Optical Sensor Based on an Asymmetric Mach-Zehnder Interferometer

  • Luo, Yanxia;Yin, Rui;Ji, Wei;Huang, Qingjie;Gong, Zisu;Li, Jingyao
    • Current Optics and Photonics
    • /
    • v.4 no.6
    • /
    • pp.558-565
    • /
    • 2020
  • A wavelength-independent optical sensor based on an asymmetric Mach-Zehnder interferometer (AMZI) is proposed. The optical sensor based on an AMZI is very sensitive to wavelength, and wavelength drift will lead to measurement error. The optical sensor is compensated to reduce its dependence on wavelength. The insensitivity of the optical sensor to wavelength mainly depends on the compensation structure, which is composed of an AMZI cascaded with another AMZI and can compensate the wavelength drift. The influence of wavelength drift on the optical sensor can be counteracted by carefully designing the size parameters of the compensation structure. When the wavelength changes from 1549.9 nm to 1550.1 nm, the error after compensation can be lower than 0.066%. Furthermore, the effect of fabrication tolerance on compensation results is analyzed. The proposed compensation method can also be used to compensate the drift of other parameters such as temperature, and can be applied to the compensation of other interference-based optical devices.

Side-Coupled Asymmetric Plastic Optical Fiber Coupler for Optical Sensor Systems

  • Kim, Kwang-Taek;Kim, Deok-Gi;Hyun, Woong-Keun;Hong, Ki-Bum;Im, Kie-Gon;Baik, Se-Jong;Kim, Dae-Kyong;Choi, Hyun-Yong
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.255-261
    • /
    • 2008
  • This paper reports a side-coupled asymmetric $1{\times}2$ plastic optical fiber coupler for an optical sensor system. The dependence of the optical power coupling ratio on the coupling angle and refractive index of the adhesion layer in both the forward and backward directions was examined based on the geometrical optics. It was confirmed experimentally that the coupling ratios can be optimized by controlling the coupling angle and refractive index of the adhesion layer. A maximum forward coupling efficiency > 93% was achieved.

Quantile Dependence between Foreign Exchange Market and Stock Market: The Case of Korea

  • Han, Heejoon;Lee, Na Kyeong
    • East Asian Economic Review
    • /
    • v.20 no.4
    • /
    • pp.519-544
    • /
    • 2016
  • This paper examines quantile dependence and directional predictability between the foreign exchange market and the stock market in Korea. Instead of adopting a multivariate model such as a vector autoregressive model, a multivariate GARCH model or a combination of both models, we apply the cross-quantilogram recently proposed by Han et al. (2016). Considering various quantile ranges, we investigate various spillover effects between two markets. Our findings show that there exists an asymmetric bi-directional spillover between two markets and the interdependence between two markets implies that one market has significant predictive power on the other.

Dependence of Harmonics Profiles on Domain Dynamics in Current-Carrying Iron Whisker

  • KIm, C.G.;Kim, D.Y.;Ryu, K.S.;Yang, Y.S.;Lee, J.G.
    • Journal of Magnetics
    • /
    • v.1 no.2
    • /
    • pp.60-63
    • /
    • 1996
  • The first and second harmonics have been measured in the iron whisker with the axial current that produces a circular field. The observed harmonics profiles have been discussed in terms of theoretical analysis based on the nonlinear, asymmetric magnetization that are related to the nucleation, transformation and annihilation of domains. The change of second harmonics profile is more sensitive to the domain variation than that of first harmonics.

  • PDF

Magnetization Angle and Thickness Dependence of Perpendicular Exchange Anisotropy in [Pd/Co]n/FeMn Films

  • Choi, S.D.;Joo, H.W.;Yun, D.K.;Lee, M.S.;Lee, K.A.;Lee, H.S.;Kim, S.W.;Lee, S.S.;Hwang, D.G.
    • Journal of Magnetics
    • /
    • v.11 no.2
    • /
    • pp.70-73
    • /
    • 2006
  • The magnetization angle and thickness dependence of magnetic anisotropy in the exchange-biased [Pd/Co]${\times}$5/FeMn multilayers with an out-of-plane anisotropy were investigated to determine the origin of perpendicular exchange biasing. As the Co thickness increased to 1.5 nm in the [Pd(0.8 nm)/Co(t)]${\times}$5/FeMn(120 nm) films, the hysteresis loops were converted from square loops at a thin Co (<0.4 nm) to complicated round ones at a thick Co. The irregularly asymmetric step (IAS) at the left top of the loop appeared in the loop of the 0.6-nm Co film due to an inhomogeneity in the exchange anisotropy. As the Pd thickness increased to 1.6 nm, the step disappeared, and the perpendicular magnetic anisotropy was maximized in the Co thickness between 0.6 and 0.9 nm. The conversion of the magnetization loop along the magnetization angle coincided with the equation $H_{(eff)}=H_o\;cos{\theta}$. The IAS of the 0.8-nm Pd film disappeared after thermal annealing up to $200^{\circ}C$ under an external magnetic field.