• 제목/요약/키워드: Assumed modes

검색결과 228건 처리시간 0.048초

강화변형률 솔리드 요소를 사용한 사각형태 층간분리를 갖는 복합적층판의 탄성좌굴해석 (Elastic Buckling Analysis of Laminated Composite Plates with Embedded Square Delamination Using an Enhanced Assumed Strain Solid Element)

  • 박대용;장석윤
    • 복합신소재구조학회 논문집
    • /
    • 제1권2호
    • /
    • pp.1-13
    • /
    • 2010
  • 복합적층구조의 층간분리현상은 탄성좌굴하중을 감소시키며 설계값보다 낮은 수준에서 전체구조물의 파괴를 유발한다. 따라서 복합적층구조의 층간분리 현상은 매우 중요한 문제이며 많은 이론과 실험적인 연구가 진행되어왔다. 본 연구에서는 3차원 이론을 사용한 효과적인 유한요소법에 기초하여 임베디드된 사각형 층간분리 현상을 갖는 복합적층판의 탄성좌굴 거동을 분석하였다. 해석을 위해 개발된 3차원 유한요소는 EAS-SOLID8이라고 이름 붙여졌으며 강화된 대체 변형률 방법을 사용하였다. 임베디드된 사각형 층간분리를 갖는 복합적층판의 탄성좌굴거동 분석을 위해 경계조건, 폭-두께비 변화에 대하여 매개변수 해석을 수행하였다. 본 연구의 그래프와 좌굴모드는 임베디드된 사각형 층간분리를 갖는 복합적층판의 설계에 매우 유용한 자료가 될 것으로 사료된다.

  • PDF

편면 보강판의 압축강도 해석을 위한 한 방법 (A Method for Calculation of Compressive Strength of a One-Sided Stiffened Plate)

  • 장창두;서승일
    • 대한조선학회논문집
    • /
    • 제28권1호
    • /
    • pp.117-124
    • /
    • 1991
  • 본 논문에서는 편면 보강판의 압축 강도 해석 시, 유한 요소법의 비경제성을 극복하기 위하여, 붕괴 양식을 가정하고, 각 붕괴 양식에 대해 압축 강도를 구하였다. 최종 강도는 탄성 대변형 해석 곡선과 소성 붕괴를 가정하여 얻은 소성 해석 곡선과의 교점으로 택하였다. 기존의 연구와는 달리 소성 붕괴선의 형상을 변경시켜 최소의 강도 값을 주는 교점을 최종 강도로 택하였다. 최소 강비는 가정한 붕괴 양식의 교점으로 부터 얻어질 수 있다. 탄성 해석에서는 좌굴 파형을 가정하고, 보강재의 비대칭으로 인한 편심 모우멘트를 고려하였으며, 평형 조건식은 Rayleigh-Ritz법을 이용하여 유도하였다. 소성 해석 시에는 고성 붕괴선을 가정하여 소성 붕괴 조건식을 유도하였다. 좌굴과 최종 강도 계산 결과를 유한 요소법에 의한 결과와 비교한 결과, 양호한 일치를 보였다.

  • PDF

비대칭 보에 의해 보강된 등방성 평판의 음향방상에 관한 연구 (A study on sound radiation from isotropic plates stiffened by unsymmetrical beams)

  • 김택현;오택열;김종태
    • 대한기계학회논문집A
    • /
    • 제22권4호
    • /
    • pp.753-761
    • /
    • 1998
  • The determination of sound pressure radiated from periodic plate structures is fundamental in the estimation of noise level in aircraft fuselages or ship hull structures. As a robust approach to this problem, here a very general and comprehensive analytical model is developed for predicting the sound radiated by a vibrating plate stiffened by periodically spaced orthogonal unsymmetrical beams subjected to a sinusoidally time varying point load. The plate is assumed to be infinite in extent, and the beams are considered to exert both line force and moment reactions on it. Using this theoretical model, the sound pressure levels on axis in a semi-infinited fluid (water) bounded by the plate were calculated using three numerical tools such as the Gauss-Jordan method, the LU decomposition method and the IMSL numberial package. Especially, the variation in the sound pressure levels and their modes were investigated according to the change in frequency, bay spacing and bay distance.

전달매트릭스법을 이용한 크랭크축의 2차원 진동해석 (Two Dimensional Vibration Analysis of Cranck Shaft by Using Transfer Matrix Method)

  • 김광식;오재응;김만복
    • 대한기계학회논문집
    • /
    • 제15권2호
    • /
    • pp.455-462
    • /
    • 1991
  • This paper present an analysis method of crankshaft of four cylinder internal combustion engine for studying dynamic characteristics of the shaft. For simple analysis, uniform sections of journal, pin and arm parts were assumed. Transfer Matrix Method was used, considering branched part and coordinate transformation part. Natural frequencies, natural modes and transfer functions of crank shaft were investigated based upon the Timosenko beam theory: It was shown that the calculated natural frequencies, modeshapes agree well with the experimental results.

가속수명시험 모델에 따른 평기어의 신뢰성 해석 (Reliability Analysis of the Spur Gear with Accelerated Life Testing Model)

  • 김철수;권여현;김주형;김정규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.136-141
    • /
    • 2004
  • The gear in various mechanical components easily occurs at damages by the external torque. The main failure modes of the gear are surface pitting with the tooth surface and breakage with tooth root by caused fatigue. Therefore, the gear is very important role in the reliability research since it may cause fatal damage of entire system such as the gear box in automobile transmission. In this study, the failure mode of the gear was analyzed and accelerated durability analysis was employed for the life estimation of spur gears. In the case of assumed load spectrums, the reliability of spur gears was evaluated by inverse power law-Weibull accelerated life test model with cumulative damage exposure.

  • PDF

Efficient Aerodynamic Computation of a Wing Model Considering Body Effect for the Aeroelastic Application

  • Lee, Seung-Jun;Im, Dong-Kyun;Lee, In
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제10권1호
    • /
    • pp.14-19
    • /
    • 2009
  • The typical aeroelastic analysis for a complex configuration such as a complete aircraft was done using the aerodynamic results of the wing and the structural modes of a complete aircraft; that is, the aerodynamics of a wing of a complete aircraft is assumed to be not much influenced by the body shape. Nevertheless, the body shape can cause a distortion of aerodynamic pressure on the wing surface and it is necessary to investigate the body effect in flutter analysis. In this reseasrch, MGM inverse design method is applied to include the body effect of a wing-body model which disturbs the pressure distribution on the wing surface.

배플을 갖는 원통형 유체저장 탱크의 연성진동해석 (Coupled Vibration Analysis of Cylindrical Fluid-storage Tanks with a Baffle)

  • 김영완
    • 한국소음진동공학회논문집
    • /
    • 제15권1호
    • /
    • pp.96-104
    • /
    • 2005
  • The coupled vibration characteristics for the fluid-structure interaction systems are investigated through the finite element method. The present paper is focused on vibration characteristics of the cylindrical fluid-storage tank with a baffle. The tank is partially filled with an inviscid and irrotational fluid having a free surface. A baffle is assumed here to have the shape of a thin annular plate and a conical shell, attached to the cylindrical tank and positioned below the fluid surface. The liquid domain is limited by a rigid flat bottom. As the effect of free surface waves is taken into account in the analysis, the bulging and sloshing modes are studied. To demonstrate the validity of present results, they are compared with the published ones. The effect of positions and inner-to-outer radius ratio of annular baffle and setting angles of conical baffle on coupled vibration characteristics is investigated.

크랙을 가진 유체유동 파이프의 안정성 해석 (Stability Analysis of Pipe Conveying Fluid with Crack)

  • 안태수;손인수;윤한익
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.865-868
    • /
    • 2006
  • In this paper, a dynamic behavior(natural frequency) of a cracked simply supported pipe conveying fluid is presented. In addition, an analysis of the flutter and buckling instability of a cracked pipe conveying fluid due to the coupled mode (modes combined) is presented. Based on the Euler-Bernouli beam theory, the equation of motion can be constructed by using the Lagrange's equation. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. The stiffness of the spring depends on the crack severity and the geometry of the cracked section. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. This study will contribute to the safety test and stability estimation of structures of a cracked pipe conveying fluid.

  • PDF

사용중인 구조물의 보강효과에 대한 해석적 연구 (Numerical Analysis on External Strengthening Effects in Aged Structures)

  • 신승교;임윤묵;김문겸;박동철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.455-460
    • /
    • 2002
  • In this study, a numerical analysis that can effectively predict the effect of strengthening of cracked flexural members is developed using axial deformation link elements. Concrete and interface between concrete and repair material are considered as quasi-brittle material. Reinforcing bars and reinforcing steel plates are assumed to perform as elasto-plastic materials. Unloading behavior of axial deformation link element is implemented. In the developed numerical model, a flexural member is intentionally cracked by pre-loading, then, the cracked member is repaired using extra elements, and reloaded. The results from analysis of repaired flexural members agrees well with available experiment results. Also, it was shown that the effect of strengthening and the change of failure mode with respect to the time for strengthening and thickness of repair materials. Based on the results, it was determined that the developed numerical model has a good agreement for determining failure modes and effect of strengthening in cracked flexural members. By utilizing the developed numerical analysis, the time and dimension of external strengthening in an existing cracked flexural member with predition of failure mechanism can be determined.

  • PDF

고차전단변형과 대처짐을 고려한 복합적층판의 저속충격거동 해석 (Low-Velocity Impact Response Analysis of Composite Laminates Considering Higher Order Shear Deformation and Large Deflection)

  • 최익현;홍창선
    • 대한기계학회논문집
    • /
    • 제17권12호
    • /
    • pp.2982-2994
    • /
    • 1993
  • Low-velocity impact responses of composite laminates are investigated using the finite element method based on various theories. In two-dimensional nonlinear analysis, a displacement field considering higher order shear deformation and large deflection of the laminate is assumed and a finite element formulation is developed using a C$^{o}$-continuous 9-node plate element. Also, three-dimensional linear analysis based on the infinitesimal strain-displacement assumptions is performed using 8-node brick elements with incompatible modes. A modified Hertzian contact law is incorporated into the finite element program to evaluate the impact force. In the time integration, the Newmark constant acceleration algorithm is used in conjuction with successive iterations within each time step. Numerical results from static analysis as well as the impact response analysis are presented including impact force histories, deflections, strains in the laminate. Impact responses according to two typical low-velocity impact conditions are compared each other.