Elastic Buckling Analysis of Laminated Composite Plates with Embedded Square Delamination Using an Enhanced Assumed Strain Solid Element

강화변형률 솔리드 요소를 사용한 사각형태 층간분리를 갖는 복합적층판의 탄성좌굴해석

  • 박대용 (대림산업 기술연구소 특수교량팀) ;
  • 장석윤 (서울시립대학교 토목공학과 / (주)이산)
  • Received : 2010.05.02
  • Accepted : 2010.06.08
  • Published : 2010.06.30

Abstract

Delamination reduces an elastic buckling load of the laminated composite structures and lead to global structural failure at loads below the design level. Therefore, the problem of the delamination buckling of laminated composite structures has generated significant research interest and has been the subject of many theoretical and experimental investigations. However, questions still remain regarding a complete understanding and details of the phenomena involved. In this paper an efficient finite element model is presented for analyzing the elastic buckling behavior of laminated composite plates with square embedded delamination using a solid element based on a three-dimensional theory. The solid finite element, named by EAS-SOLID8, based on an enhanced assumed strain method is developed. The study for elastic buckling behavior of laminated composite plates with embedded square delaminations are focused on various parameters, such as support condition and width-to-thickness ratio. Both graphs and buckling modes in this paper are good guide for design of the laminated composite plates with embedded square delamination.

복합적층구조의 층간분리현상은 탄성좌굴하중을 감소시키며 설계값보다 낮은 수준에서 전체구조물의 파괴를 유발한다. 따라서 복합적층구조의 층간분리 현상은 매우 중요한 문제이며 많은 이론과 실험적인 연구가 진행되어왔다. 본 연구에서는 3차원 이론을 사용한 효과적인 유한요소법에 기초하여 임베디드된 사각형 층간분리 현상을 갖는 복합적층판의 탄성좌굴 거동을 분석하였다. 해석을 위해 개발된 3차원 유한요소는 EAS-SOLID8이라고 이름 붙여졌으며 강화된 대체 변형률 방법을 사용하였다. 임베디드된 사각형 층간분리를 갖는 복합적층판의 탄성좌굴거동 분석을 위해 경계조건, 폭-두께비 변화에 대하여 매개변수 해석을 수행하였다. 본 연구의 그래프와 좌굴모드는 임베디드된 사각형 층간분리를 갖는 복합적층판의 설계에 매우 유용한 자료가 될 것으로 사료된다.

Keywords

References

  1. Andelfinger, U. and Ramm, E. (1993) EAS-elements for two-dimensional, three-dimensional, plate and shell structures and their equivalence to HR-elements, International Journal of Numerical Methods in Engineering, Vol.36, pp.1311-1337. https://doi.org/10.1002/nme.1620360805
  2. Chattopadhyay, A. and Gu, H. (1994) New higher order plate theory in modeling delamination buckling of composite laminates, AIAA Journal, Vol.32, No.8, pp.1709-1716. https://doi.org/10.2514/3.12163
  3. Chai, H., Babcock, C.A., and Knauss, W.G. (1981) One dimensional modeling of failure in laminated plates by delamination buckling, International Journal of Solids Structures, Vol.17, pp.1069-1083. https://doi.org/10.1016/0020-7683(81)90014-7
  4. Chen, H. P. (1991) Shear deformation theory for compressive delamination buckling and growth, AIAA Journal, Vol.29, pp.813-819. https://doi.org/10.2514/3.10661
  5. Cheng, Z.Q., Kennedy, D., and Williams, F.W. (1996) Effect of interfacial imperfection on buckling and bending behavior of composite laminates, AIAA Journal, Vol.34, pp.2590-2595. https://doi.org/10.2514/3.13443
  6. Hu, N. (1999) Buckling analysis of delaminated laminates with consideration of contact in buckling mode, International Journal of Numerical Methods in Engineering, Vol.44, pp.1457-1479. https://doi.org/10.1002/(SICI)1097-0207(19990410)44:10<1457::AID-NME545>3.0.CO;2-9
  7. Kant, T. and Manjunatha, B.S. (1988) An unsymmetric FRC laminate CPP0PP finite element model with 12 degrees of freedom per node, Engineering Computation, Vol.5, pp.300-308. https://doi.org/10.1108/eb023749
  8. Kardomateas, G.A. and Schmueser, D.W. (1988) Buckling and postbuckling of delaminated composites under compressive loads including transverse shear effects, AIAA Journal, Vol.26, No.3, pp.337-343. https://doi.org/10.2514/3.9894
  9. Kim, H. and Kedward, K.T. (1999) A method for modeling the local and global buckling of delaminated composite plates, Composite Structures, Vol.44, pp.43-53. https://doi.org/10.1016/S0263-8223(98)00117-2
  10. Kim, H.J. and Hong, C.S. (1997) Buckling and postbuckling behavior of composite laminates with a delamination, Composites Science and Technology, Vol.57, pp.557-564. https://doi.org/10.1016/S0266-3538(97)00011-0
  11. Kim, J.S. and Cho, M. (2002) Buckling analysis for delaminated composites using plate bending elements based on higher-order zig-zag theory, International Journal of Numerical Methods in Engineering, Vol.55, pp.1323-1343. https://doi.org/10.1002/nme.545
  12. Klug, J., Wu, X.X., and Sun, C.T. (1996) Efficient modeling of postbuckling delamination growth in composite laminates using plate elements, AIAA Journal, Vol.34, pp.178-184. https://doi.org/10.2514/3.13038
  13. Lee, Y.J., Lee, C.H., and Fu, W.S. (1998) Study on the compressive strength of laminated composite with thorugh-the-width delamination, Composite Structures, Vol.41, pp.229-241. https://doi.org/10.1016/S0263-8223(98)00015-4
  14. Lee, J., Gurdal, Z., and Griffin, H. (1993) Layer-wise approach for the bifurcation problem in laminated composites with delaminations, AIAA Journal, Vol.31, pp.331-338. https://doi.org/10.2514/3.11672
  15. Lee, S.Y. and Park, D.Y (2007) Buckling analysis of laminated composite plates containing delaminations using the enhanced assumed strain solid element, International Journal of Solid and Structures, Vol.44, pp.8006-8027 https://doi.org/10.1016/j.ijsolstr.2007.05.023
  16. Naganarayana, B.P. and Atluri, S.N. (1995) Strength reduction and delamination growth in thin and thick composite plates under compressive loading, Computational Mechanics, Vol.16, pp.170-189. https://doi.org/10.1007/BF00369779
  17. Noor, A. K. and Mathers, M. D. (1975) Anisotropy and shear deformation in laminated composite plates, AIAA Journal, Vol.14, pp.282-285.
  18. Pandya, B.N. and Kant, T. (1988) Finite element stress analysis of laminated composite plates using higher order displacement model, Composite Science and Technology, Vol.32, pp.137-155. https://doi.org/10.1016/0266-3538(88)90003-6
  19. Park, D.Y. (2006) Buckling behavior of laminated composite structures with delamination, Ph.D. dissertation, University of Seoul, Seoul, Korea.
  20. Pian, T.H.H., Chen, D.P., and Kang, D. (1983) A new formulation of hybrid/mixed finite element, Computers and Structures, Vol.16, pp.81-87. https://doi.org/10.1016/0045-7949(83)90149-9
  21. Reddy, J.N. (1984a) Exact solutions of moderately thick laminated shells, Journal of Engineering Mechanics ASCE, Vol.110, pp.794-809. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:5(794)
  22. Reddy, J.N. (1984b) A simple higher-order theory for laminated composite plates, Journal of Applied Mechanics, Vol.51, pp.745-752. https://doi.org/10.1115/1.3167719
  23. Rinderknecht, S. and Kroplin, B. (1995) A finite element model for delamination in composite plates, Mechanics of Composite Materials and Structures, Vol.2, pp.19-47. https://doi.org/10.1080/10759419508945829
  24. Senthilnathan, N. R., Lim, K.H., Lee, K.H. and Chow, S.T. (1987) Buckling of shear deformable plates, AIAA Journal, Vol.25, pp.1268-1271. https://doi.org/10.2514/3.48742
  25. Sheinman, I. and Soffer, M. (1990) Effect of delamination on the nonlinear behavior of composite laminated beams, ASME Journal of Engineering Material and Technology, Vol.11, pp.393-397.
  26. Simitses, G.J., Sallam, S. and Yin, W.L. (1985) Effect of delamination of axially loaded homogeneous laminated plates, AIAA Journal, Vol.23, pp.1437-1444. https://doi.org/10.2514/3.9104
  27. Simo, J.C. and Rifai, M.S. (1990) A class of mixed assumed strain methods and the method of incompatible modes, International Journal of Numerical Methods in Engineering, Vol.29, pp.1595-1638. https://doi.org/10.1002/nme.1620290802
  28. Suemasu H. (1993) Effects of multiple delaminations on compressive buckling behaviors of composite panels, Journal of Composite Materials, Vol.27, pp.1172-1192. https://doi.org/10.1177/002199839302701202
  29. Wang, J.T., Pu, H.N., and Lin, C.C. (1997) Buckling of beam-plates having multiple delaminations, Journal of Composite Materials, Vol.31, pp.1002-1025. https://doi.org/10.1177/002199839703101003
  30. Whitcomb, J.D. (1989) Three-dimensional analysis of a postbuckled embedded delamination, Journal of Composite Materials, Vol. 23, pp. 862-889. https://doi.org/10.1177/002199838902300901
  31. Whitcomb, J.D. (1989) Predicted and observed effects of stacking sequence and delamination size on instability related delamination growth, Journal of Composite and Technology Res, Vol.11, pp.94-98. https://doi.org/10.1520/CTR10158J
  32. Whitney, J. M. and Pagano, N.J. (1970) Shear deformation in heterogeneous anisotropic plates, ASME Journal of Applied Mechanics, Vol.37, pp.1031-1036. https://doi.org/10.1115/1.3408654