• 제목/요약/키워드: Assembled structures

검색결과 232건 처리시간 0.03초

Simplified model to study the dynamic behaviour of a bolted joint and its self loosening

  • Ksentini, Olfa;Combes, Bertrand;Abbes, Mohamed Slim;Daidie, Alain;Haddar, Mohamed
    • Structural Engineering and Mechanics
    • /
    • 제55권3호
    • /
    • pp.639-654
    • /
    • 2015
  • Bolted joints are essential elements of mechanical structures and metal constructions. Although their static behaviour is fairly well known, their dynamic behaviour due to shocks and vibrations has been less studied, because of the large size of the finite element models needed for a detailed simulation. This work presents four different simplified models suitable for studying the dynamic behaviour of an elementary bolted joint. Three of them include contact elements to allow sliding of the screw head and the nut on the assembled parts, and the last one allows rotation between screw and nut. A penalty approach based on the Coulomb friction model is used to model contact. The results show that these models effectively represent the dynamic behaviour, with different accuracy depending on the model details. The last model simulates the self loosening of a bolt subjected to transversal vibrations.

Extracting parameters of TMD and primary structure from the combined system responses

  • Wang, Jer-Fu;Lin, Chi-Chang
    • Smart Structures and Systems
    • /
    • 제16권5호
    • /
    • pp.937-960
    • /
    • 2015
  • Tuned mass dampers (TMDs) have been a prevalent vibration control device for suppressing excessive vibration because of environmental loadings in contemporary tall buildings since the mid-1970s. A TMD must be tuned to the natural frequency of the primary structure to be effective. In practice, a TMD may be assembled in situ, simultaneously with the building construction. In such a situation, the respective dynamic properties of the TMD device and building cannot be identified to determine the tuning status of the TMD. For this purpose, a methodology was developed to obtain the parameters of the TMD and primary building on the basis of the eigenparameters of any two complex modes of the combined building-TMD system. The theory was derived in state-space to characterize the nonclassical damping feature of the system, and combined with a system identification technique to obtain the system eigenparameters using the acceleration measurements. The proposed procedure was first demonstrated using a numerical verification and then applied to real, experimental data of a large-scale building-TMD system. The results showed that the procedure is capable of identifying the respective parameters of the TMD and primary structure and is applicable in real implementations by using only the acceleration response measurements of the TMD and its located floor.

Cracking of a prefabricated steel truss-concrete composite beam with pre-embedded shear studs under hogging moment

  • Gao, Yanmei;Zhou, Zhixiang;Liu, Dong;Wang, Yinhui
    • Steel and Composite Structures
    • /
    • 제21권5호
    • /
    • pp.981-997
    • /
    • 2016
  • To avoid the cracks of cast-in-place concrete in shear pockets and seams in the traditional composite beam with precast decks, this paper proposed a new type of prefabricated steel truss-concrete composite beam (ab. PSTC beam) with pre-embedded shear studs (ab. PSS connector). To study the initial cracking load of concrete deck, the development and distribution laws of the cracks, 3 PSTC beams were tested under hogging moment. And the crack behavior of the deck was compared with traditional precast composite beam, which was assembled by shear pockets and cast-in-place joints. Results show that: (i) the initial crack appears on the deck, thus avoid the appearance of the cracks in the traditional shear pockets; (ii) the crack of the seam appears later than that of the deck, which verifies the reliability of epoxy cement mortar seam, thus solves the complex structure and easily crack behavior of the traditional cast-in-place joints; (iii) the development and the distribution laws of the cracks in PSTC beam are different from the conventional composite beam. Therefore, in the deduction of crack calculation theory, all the above factors should be considered.

Deterministic manipulation and visualization of near field with ultra-smooth, super-spherical gold nanoparticles by atomic force microscopy

  • KIM, MINWOO;LEE, JOOHYUN;YI, GI-RA;LEE, SEUNGWOO;SONG, YOUNG JAE
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.111.1-111.1
    • /
    • 2015
  • As an alternative way to get sophisticated nanostructures, atomic force microscopy (AFM) has been used to directly manipulate building primitives. In particular, assembly of metallic nanoparticles(NPs) can provide various structures for making various metamolecules. As far, conventionally made polygonal shaped metallic NPs showed non-uniform distribution in size and shape which limit its study of fundamental properties and practical applications. In here, we optimized conditions for deterministic manipulation of ultra-smooth and super-spherical gold nanoparticles (AuNPs) by AFM. [1] Lowered adhesion force by using platinum-iridium coated AFM tips enabled us to push super-spherical AuNPs in linear motion to pre-programmed position. As a result, uniform and reliable electric/magnetic behaviors of assembled metamolecules were achieved which showed a good agreement with simulation data. Furthermore, visualization of near field for super-spherical AuNPs was also addressed using photosensitive azo-dye polymers. Since the photosensitive azo-dye polymers can directly record the intensity of electric field, optical near field can be mapped without complicated instrumental setup. [2] By controlling embedding depth of AuNPs, we studied electric field of AuNPs in different configuration.

  • PDF

Calculation of eigenvalue and eigenvector derivatives with the improved Kron's substructuring method

  • Xia, Yong;Weng, Shun;Xu, You-Lin;Zhu, Hong-Ping
    • Structural Engineering and Mechanics
    • /
    • 제36권1호
    • /
    • pp.37-55
    • /
    • 2010
  • For large-scale structures, the calculation of the eigensolution and the eigensensitivity is usually very time-consuming. This paper develops the Kron's substructuring method to compute the first-order derivatives of the eigenvalues and eigenvectors with respect to the structural parameters. The global structure is divided into several substructures. The eigensensitivity of the substructures are calculated via the conventional manner, and then assembled into the eigensensitivity of the global structure by performing some constraints on the derivative matrices of the substructures. With the proposed substructuring method, the eigenvalue and eigenvector derivatives with respect to an elemental parameter are computed within the substructure solely which contains the element, while the derivative matrices of all other substructures with respect to the parameter are zero. Consequently this can reduce the computation cost significantly. The proposed substructuring method is applied to the GARTEUR AG-11 frame and a highway bridge, which is proved to be computationally efficient and accurate for calculation of the eigensensitivity. The influence of the master modes and the division formations are also discussed.

Strain-induced islands and nanostructures shape transition's chronology on InAs (100) surface

  • Gambaryan, Karen M.;Aroutiounian, Vladimir M.;Simonyan, Arpine K.;Ai, Yuanfei;Ashalley, Eric;Wang, Zhiming M.
    • Advances in nano research
    • /
    • 제2권4호
    • /
    • pp.211-217
    • /
    • 2014
  • The self-assembled strain-induced sub-micrometric islands and nanostructures are grown from In-As-Sb-P quaternary liquid phase on InAs (100) substrates in Stranski-Krastanow growth mode. Two samples are under consideration. The first sample consists of unencapsulated islands and lens-shape quantum dots (QDs) grown from expressly inhomogeneous liquid phase. The second sample is an n-InAs/p-InAsSbP heterostructure with QDs embedded in the p-n junction interface. The morphology, size and shape of the structures are investigated by high-resolution scanning electron (SEM) and transmission electron (TEM) microscopy. It is shown that islands, as they decrease in size, undergo shape transitions. Particularly, as the volume decreases, the following succession of shape transitions are detected: sub-micrometric truncated pyramid, {111} facetted pyramid, {111} and partially {105} facetted pyramid, completely unfacetted "pre-pyramid", hemisphere, lens-shaped QD, which then evolves again to nano-pyramid. A critical size of $5{\pm}2nm$ for the shape transformation of InAsSbP-based lens-shaped QD to nano-pyramid is experimentally measured and theoretically evaluated.

Heat-induced coarsening of layer-by-layer assembled mixed Au and Pd nanoparticles

  • Shon, Young-Seok;Shon, Dayeon Judy;Truong, Van;Gavia, Diego J.;Torrico, Raul;Abate, Yohannes
    • Advances in nano research
    • /
    • 제2권1호
    • /
    • pp.57-67
    • /
    • 2014
  • This article shows the coarsening behavior of nanoparticle multilayers during heat treatments which produce larger metallic nanostructures with varying shapes and sizes on glass slides. Nanoparticle multilayer films are initially constructed via the layer-by-layer self-assembly of small and monodispersed gold and/or palladium nanoparticles with different compositions (gold only, palladium only, or both gold and palladium) and assembly orders (compounding layers of gold layers over palladium layers or vice versa). Upon heating the slides at $600^{\circ}C$, the surface nanoparticles undergo coalescence becoming larger nanostructured metallic films. UV-Vis results show a clear reliance of the layering sequence on the optical properties of these metal films, which demonstrates an importance of the outmost (top) layers in each nanoparticle multilayer films. Topographic surface features show that the heat treatments of nanoparticle multilayer films result in the nucleation of nanoparticles and the formation of metallic cluster structures. The results confirm that different composition and layering sequence of nanoparticle multilayer films clearly affect the coalescence behavior of nanoparticles during heat treatments.

I 형강 격자 상판의 피로 성능에 관한 실험적 연구 (Experimental Fatigue Performance of Concrete Slab with I-shaped Steel)

  • 박창규;김용곤;김철환;이재형;정영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.541-546
    • /
    • 2000
  • Recently, there have been increased mush concerns about repair and rehabilitation works for aged concrete structures to keep up with rapid economic growth in Korea since the early 1970's. In particular, it is believed in these days that there are significantly increasing number of aged concrete bridge slabs, which are strongly needed to construct and rehabilitate by innovative construction method. The objective of this research is to develop the new construction method of concrete slab in bridge structure, which can contribute to minimize the traffic congestion during the repair and rehabilitation works of aged concrete slab, and can also sufficiently assure the quality through the minimization of in-situ works at the site. I-beams with punch holes, which are substituted instead of main reinforcing steels in concrete slabs, will be manufactured in accordance with the specification in the factory, and will be preassembled into the panel. After erecting the preassembled panels in the site, concrete will be poured into the slab panel. This test is to investigate physical properties of I-Beam with punch holes itself, and then to investigate structural properties of assembled I-Beam panels through static and fatigue test, of which can be utilized for the development of new construction method of concrete slab in bridge structure.

  • PDF

SEA에 기초를 둔 손실계수를 이용한 결합계수의 평가 (Coupling loss factor evaluation using loss factor based on the SEA)

  • 안병하;황선웅;김영종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.568-571
    • /
    • 1997
  • The overall aim of this paper is to determine coupling loss factor using loss factor and structural loss factor. For this purpose, two kinds of loss factor were adopted. One is loss factor of each sub structure, another is structural loss factor based on the complex welded or assembled structure. Using these two parameters, it is possible to derive the coupling loss factor which represent characteristic condition of SEA theory. Coupling loss factor of conjunction in complex structure was expressed as power balance equation. The derived equation for a coupling loss factor has been simplified on the assumption of one directional power flow between two sub structures. Using these conditions, it is possible to find the coupling loss factor equation. The comparison between theory of power transmission on conjunction and above equation, show a good agreement in simple beam structure. To check the effectiveness of above equation, it was adopted rotary compressor. Rotary compressor has three main conjunctions between shell and internal vibration part. This equation was applied to find out the optimum welding point with respect to reduce the noise propagation. It shows the effective tool to evaluate the coupling loss factor in complex structure.

  • PDF

Study on drilling of CFRP/Ti6Al4V stack with modified twist drills using acoustic emission technique

  • Prabukarthi, A.;Senthilkumar, M.;Krishnaraj, V.
    • Steel and Composite Structures
    • /
    • 제21권3호
    • /
    • pp.573-588
    • /
    • 2016
  • Carbon Fiber Reinforced Plastic (CFRP) and Titanium Alloy (Ti6Al4V) stack, extensively used in aerospace structural components are assembled by fasteners and the holes are made using drilling process. Drilling of stack in one shot is a complicated process due to dissimilarity in the material properties. It is vital to have optimal machining condition and tool geometry for better hole quality and tool life. In this study the tool wear and hole quality were analysed by experimental analysis using three modified twist drills and online tool condition monitoring using Acoustics Emission (AE) sensor. Helix angle and point angle influence tool performance and cutting force. It was found that a tool geometry (TG1) with high helix angle of $35^{\circ}$ with low point angle $130^{\circ}$ results in reduction in thrust force of 150-500 N range but the TG2 also perform almost similar to TG1, but when compared with the AErms voltage generated during drilling it was found that progressive rise in voltage in TG1 is less with respect to TG2 which can be attributed to tool life. In process wear monitoring was done using crest factor as monitoring index. AErms voltage were measured and correlated with the performance of the drills.