Browse > Article
http://dx.doi.org/10.12989/sss.2015.16.5.937

Extracting parameters of TMD and primary structure from the combined system responses  

Wang, Jer-Fu (921 Earthquake Museum of Taiwan, National Museum of Natural Science)
Lin, Chi-Chang (Department of Civil Engineering, National Chung Hsing University)
Publication Information
Smart Structures and Systems / v.16, no.5, 2015 , pp. 937-960 More about this Journal
Abstract
Tuned mass dampers (TMDs) have been a prevalent vibration control device for suppressing excessive vibration because of environmental loadings in contemporary tall buildings since the mid-1970s. A TMD must be tuned to the natural frequency of the primary structure to be effective. In practice, a TMD may be assembled in situ, simultaneously with the building construction. In such a situation, the respective dynamic properties of the TMD device and building cannot be identified to determine the tuning status of the TMD. For this purpose, a methodology was developed to obtain the parameters of the TMD and primary building on the basis of the eigenparameters of any two complex modes of the combined building-TMD system. The theory was derived in state-space to characterize the nonclassical damping feature of the system, and combined with a system identification technique to obtain the system eigenparameters using the acceleration measurements. The proposed procedure was first demonstrated using a numerical verification and then applied to real, experimental data of a large-scale building-TMD system. The results showed that the procedure is capable of identifying the respective parameters of the TMD and primary structure and is applicable in real implementations by using only the acceleration response measurements of the TMD and its located floor.
Keywords
tuned mass damper (TMD); passive control; energy dissipation device; building structure; system identification;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Brownjohn, J.M.W., Carden, E.P., Goddard, C.R. and Oudin, G. (2010), "Real-time performance monitoring of tuned mass damper system for a 183m reinforced concrete chimney", J. Wind Eng. Ind. Aerod., 98(3), 169-179.   DOI   ScienceOn
2 Chakraborty, S. and Roy, B.K. (2011), "Reliability based optimum design of tuned mass damper in seismic vibration control of structures with bounded uncertain parameters", Probabilist. Eng. Mech., 26(2), 215-221.   DOI   ScienceOn
3 Cheung Y. L. and Wong, W. O. (2011), "H-infinity optimization of a variant design of the dynamic vibration absorber-revisited and new results", J. Sound Vib., 330(16), 3901-3912.   DOI
4 Den Hartog, J.P. (1956), Mechanical Vibrations, McGraw-Hill, New York, U.S.A.
5 Farshidianfar, A. and Soheili, S. (2013), "Ant colony optimization of tuned mass dampers for earthquake oscillations of high-rise structures including soil-structure interaction", Soil Dyn. Earthq. Eng., 51, 14-22.   DOI
6 Frahm, H. (1911), Device for damping vibrations of bodies. U.S. Patent No. 989-958.
7 Greco, R. and Marano, G.C. (2013), "Optimum design of tuned mass dampers by displacement and energy perspectives", Soil Dyn. Earthq. Eng., 49, 243-253.   DOI
8 Hahnkamm, E. (1932), "Die dampfung von fundamentschwingungen bei veranderlicher erregerfrequenz", Ingenieur Archiv, 4(2), 192-201.   DOI
9 Jangid, R.S. (1999), "Optimum multiple tuned mass dampers for base-excited undamped system", Earthq. Eng. Struct. D., 28(9), 1041-1049.   DOI
10 Jangn S.J., Brennan, M.J., Rustighi, E. and Jung, H.J. (2012), "A simple method for choosing the parameters of a two degree-of-freedom tuned vibration absorber", J. Sound Vib., 331(21), 4658-4667.   DOI
11 Juang, J.N. (1997), "System realization using information matrix", J. Guid. Control Dynam., 21(3), 492-500.
12 Kang, N., Kim, H., Choi, S., Jo, S., Hwang, J.S. and Yu, E. (2012), "Performance evaluation of TMD under typhoon using system identification and inverse wind load estimation", Comput.-Aided Civ. Inf., 27(6), 455-473.   DOI
13 Kareem, A. and Kline, S. (1995), "Performance of multiple mass dampers under random loading", J. Struct. Eng.-ASCE, 121(2), 348-361.   DOI
14 Kwok, K.C.S. (1984), "Damping increase in building with tuned mass damper", J. Eng. Mech.-ASCE, 110(11), 1645-1649.   DOI
15 Li, C. (2000), "Performance of multiple tuned mass dampers for attenuating undesirable oscillators of structures under the ground acceleration", Earthq. Eng. Struct. D., 29(9), 1405-1421.   DOI
16 Li, C. and Zhu, B. (2006), "Estimating double tuned mass dampers for structures under ground acceleration using a novel optimum criterion", J. Sound Vib., 298(1-2), 280-297.   DOI
17 Li, Q.S., Zhi, L.H., Tuan, A.Y., Kao, C.S., Su, S.C. and Wu, C.F. (2011), "Dynamic behavior of Taipei 101 tower: field measurement and numerical analysis", J. Struct. Eng.-ASCE, 137(1), 143-155.   DOI
18 Lin, C.C., Hu, C.M., Wang, J.F. and Hu, R.Y. (1994), "Vibration control effectiveness of passive tuned mass dampers", J. Chin. Inst. Eng., 17(3), 367-376.   DOI
19 Lin, C.C., Wang, C.E., Wu, H.W. and Wang, J.F. (2005), "On-line building damage assessment based on earthquake records", Smart Mater. Struct., 14(3), 137-153.   DOI
20 Lin, C.C., Wang, J.F. and Tsai, C.H. (2008), "Dynamic parameter identifications for irregular buildings considering soil-structure interaction effects", Earthq. Spectra, 24(3), 641-666.   DOI
21 Lin, C.C., Wang, J.F., Lien, C.H., Chiang, H.W. and Lin, C.S. (2010), "Optimum design and experimental study of multiple tuned mass dampers with limited stroke", Earthq. Eng. Struct. D., 39(14), 1631-1651.   DOI
22 Lin, C.C. and Wang, J.F. (2012), Optimal Design and Practical Considerations of Tuned Mass Dampers for Structural Control, Design Optimization of Active and Passive Structural Control Systems, 126-149, IGI Global, Hershey, PA, USA.
23 Luft, R.W. (1979), "Optimal tuned mass dampers for buildings", J. Struct. Div.-ASCE, 105(12), 2766-2772.
24 Marano, G.C. and Quaranta, G. (2009), "Robust optimum criteria for tuned mass dampers in fuzzy environments", Appl. Soft Comput., 9, 1232-1243.   DOI
25 Marano, G.C., Greco, R. and Chiaia, B. (2010a), "A comparison between different optimization criteria for tuned mass dampers design", J. Sound Vib., 329(23), 4880-4890.   DOI
26 Marano, G.C., Greco, R. and Sgobba, S. (2010b), "A comparison between different robust optimum design approaches: Application to tuned mass dampers", Probabilist. Eng. Mech., 25(1), 108-118.   DOI
27 McNamara, R.J. (1977), "Tuned mass dampers for buildings", J. Struct. Div.-ASCE, 103(9), 1785-1798.
28 Mohtat, A. and Dehghan-Niri, E. (2011), "Generalized framework for robust design of tuned mass damper systems", J. Sound Vib., 330(5), 902-922.   DOI
29 Oka, S.Y., Song, J. and Park, K.S. (2009), "Development of optimal design formula for bi-tuned mass dampers using multi-objective optimization", J. Sound Vib., 322(1-2), 60-77.   DOI
30 Ormondroyd, J., and Den Hartog, J.P. (1928), "The theory of the dynamic vibration absorber", J. Appl. Mech. T. Am. Soc. Mech. E., 50, 9-22.
31 Park, J. and Reed, D. (2001), "Analysis of uniformly and linearly distributed mass dampers under harmonic and earthquake excitation", Eng. Struct., 23(7), 802-814.   DOI
32 Sgobba, S. and Marano, G.C. (2010), "Optimum design of linear tuned mass dampers for structures with nonlinear behavior", Mech. Syst. Signal Pr., 24(6), 1739-1755.   DOI
33 Shi, W., Shan, J. and Lu, X. (2012), "Modal identification of Shanghai World Financial Center both from free and ambient vibration response", Eng. Struct., 36, 14-26.   DOI
34 Steinbuch, R. (2011), "Bionic optimisation of the earthquake resistance of high buildings by tuned mass dampers", J. Bionic Eng., 8(3), 335-344.   DOI
35 Tigli, O.F. (2012), "Optimum vibration absorber (tuned mass damper) design for linear damped systems subjected to random loads", J. Sound Vib., 331(13), 3035-3049.   DOI
36 Ueng, J.M., Lin, C.C. and Wang, J.F. (2008), "Practical design issues of tuned mass dampers for torsionally coupled buildings under earthquake loadings", Struct. Des. Tall Buil., 17(1), 133-165.   DOI
37 Van Overschee, P. and De Moor, B. (2011), Subspace Identification for Linear Systems: Theory-Implementation-Applications, Springer, New York, NY, USA.
38 Viguie, R. and Kerschen, G. (2009), "Nonlinear vibration absorber coupled to a nonlinear primary system: A tuning methodology", J. Sound Vib., 326(3-5), 780-793.   DOI
39 Viguie R. and Kerschen, G. (2010), "On the functional form of a nonlinear vibration absorber", J. Sound Vib., 329(25), 5225-5232.   DOI
40 Villaverde, R. (1985), "Reduction seismic response with heavily-damped vibration absorbers", Earthq. Eng. Struct. D., 13(1), 33-42.   DOI
41 Wang J.F. and Lin, C.C. (2005), "Seismic performance of multiple tuned mass dampers for soil-irregular building interaction system", Int. J. Solids Struct., 42, 5536-5554.   DOI
42 Wang, J.F., Lin, C.C. and Lian, C.H. (2009). "Two-stage optimum design of tuned mass dampers with consideration of stroke", Struct. Control Health., 16(1), 55-72.   DOI
43 Wang, M., Zan, T., Yang, Y. and Fei, R. (2010), "Design and implementation of nonlinear TMD for chatter suppression: An application in turning processes", Int. J. Mach. Tool. Manu., 50(5), 474-479.   DOI
44 Warburton, G.B. (1982), "Optimum absorber parameters for various combinations of response and excitation parameters", Earthq. Eng. Struct. D., 10(3), 381-401.   DOI
45 Weber, B. and Feltrin, G. (2010), "Assessment of long-term behavior of tuned mass dampers by system identification", Eng. Struct., 32(11), 3670-3682.   DOI
46 Wirsching, P.H. and Campbell, G.W. (1973), "Minimal structural response under random excitation using the vibration absorber", Earthq. Eng. Struct. D., 2(4), 303-312.   DOI
47 Xu, K. and Igusa, T. (1992), "Dynamic characteristics of multiple substructures with closely spaced frequencies", Earthq. Eng. Struct. D., 21(12), 1059-1070.   DOI
48 Yu, H., Gillot, F. and Ichchou, M. (2013), "Reliability based robust design optimization for tuned mass damper in passive vibration control of deterministic/uncertain structures", J. Sound Vib., 332(9), 2222-2238.   DOI
49 Zilletti, M., Elliott, S.J. and Rustighi, E. (2012), "Optimisation of dynamic vibration absorbers to minimise kinetic energy and maximise internal power dissipation", J. Sound Vib., 331(18), 4093-4100.   DOI
50 Alexander, N.A. and Schilder, F. (2009), "Exploring the performance of a nonlinear tuned mass damper", J. Sound Vib., 319(1-2), 445-462.   DOI
51 Almazan, J.L., Espinoza, G. and Aguirre, J.J. (2012), "Torsional balance of asymmetric structures by means of tuned mass dampers", Eng. Struct., 42, 308-328.   DOI
52 Bekdas, G. and Nigdeli, S.M. (2011), "Estimating optimum parameters of tuned mass dampers using harmony search", Eng. Struct., 33, 2716-2723.   DOI
53 Bekdas, G. and Nigdeli, S.M. (2013), "Mass ratio factor for optimum tuned mass damper strategies", Int. J. Mech. Sci., 71, 68-84.   DOI
54 Bakre, S.V. and Jangid, R.S. (2004), "Optimum multiple tuned mass dampers for base-excited damped main system", Int. J. Struct. Stab. Dy., 4(4), 527-542.   DOI
55 Bisegna, P. and Caruso, G. (2011), "Closed-form formulas for the optimal pole-based design of tuned mass dampers", J. Sound Vib., 331(10), 2291-2314.   DOI
56 Brock, J.E. (1946), "A note on the damped vibration absorber", J. Appl. Mech. T. Am. Soc. Mech. E., 13, A-284.