• Title/Summary/Keyword: Asparagus cochinchinensis (AC)

Search Result 4, Processing Time 0.03 seconds

Microorganisms Involved in Natural Fermentation of Asparagus cochinchinensis Roots and Changes in Efficacies after Fermentation (천문동 뿌리의 자연발효에 관여하는 미생물 및 발효 후 효능 변화)

  • Kim, Min-Jee;Shin, Na Rae;Lee, Myeong-Jong;Kim, Hojun
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.18 no.2
    • /
    • pp.96-105
    • /
    • 2018
  • Objectives: The aim of this study was to examine the effect of Asparagus cochinchinensis (AC) and fermented AC (fAC) on microorganisms and efficacies. Methods: AC was fermented for four weeks without using any bacterial strains. Then we investigated fermentation characteristics including potential of hydrogen (pH), total sugar, microbial profiling and antioxidant compound contents such as total polyphenol and total flavonoid. The anti-obesity effects of AC and fAC were evaluated by using Oil Red O staining in 3T3-L1 adipocyte. Also anti-diabetic effects of them were evaluated by using 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose (2-NBDG) uptake in C2C12 skeletal muscle cell. Results: Both pH and total sugar of fAC were decreased significantly compared to unfermented AC. And the abundance of total bacteria and lactic acid bacteria increased during fermentation, especially Lactobacillus plantarum. Also fermentation of AC increased the content of total polyphenol. On the metabolic aspects, we found that AC and fAC suppressed fat accumulation. Conclusions: After four weeks of fermentation, AC increased concentrations of active compounds, altered microbial composition, and inhibited fat accumulation such as triglyceride. These results indicate that fermentation of AC might be a beneficial therapeutic approach for obesity.

Ethanol Extract from Asparagus Cochinchinensis Attenuates Glutamate-Induced Oxidative Toxicity in HT22 Hippocampal Cells (HT22 해마세포의 oxidative toxicity에 대한 천문동 유래 에탄올추출물의 보호 효과)

  • Pak, Malk Eun;Choi, Byung Tae
    • Journal of Life Science
    • /
    • v.26 no.12
    • /
    • pp.1458-1465
    • /
    • 2016
  • We investigated the neuroprotective effect of an ethanol extract from Asparagus cochinchinensis (AC) against glutamate-induced toxicity in the HT22 hippocampal cell, which is an ideal in vitro model for oxidative stress. The neuroprotective effects of AC in HT22 cells were evaluated by analyzing cell viability, lactate dehydrogenase (LDH), flow cytometry for cell death types, reactive oxygen species (ROS), mitochondria membrane potential (MMP), and Western blot assays. In the cell death analysis, AC treatment resulted in significantly attenuated glutamate-induced loss of cell viability with a decrease in LDH release. AC treatment also reduced glutamate-induced apoptotic cell death. In the ROS and MMP analysis, AC treatment inhibited the elevation of intracellular ROS induced by glutamate exposure and the disruption of MMP. In oxidative stress-related proteins analysis, AC treatment inhibited the expression of poly ADP ribose polymerase and heme oxygenase-1 by glutamate. These results indicate that AC exerts a significant neuroprotective effect against glutamate-induced hippocampal damage by decreasing ROS production and stabilizing MMP. Thus, AC potentially provides a new strategy for the treatment of oxidative stress-related diseases.

Antioxidative Properties of Asparagus cochinchinensis Root (천문동 건근의 항산화 효과에 관한 연구)

  • Koo, Kyoung Yoon;Kim, Won Baek;Park, So Hae;Kim, Minji;Kim, Bo Ram;Hwang, Jihoe;Kim, Min Jung;Son, Hong Joo;Hwang, Dae Youn;Kim, Dong Seob;Lee, Chung Yeoul;Lee, Heeseob
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.4
    • /
    • pp.524-532
    • /
    • 2016
  • This study was performed to compare the antioxidative activities of methanol extracts from Asparagus cochinchinensis with whole root (W-AC), flesh (F-AC), and root bark (B-AC). To evaluate the antioxidative properties of their methanol extracts, 1,1-diphenyl-2-picrylhydrazyl radical, nitrite, hydroxyl radical, 2,2'-azino-bis(3-ethylbenz thiazoline-6-sulfonate) radical scavenging activities, and contents of total flavonoid and polyphenol contents were measured. B-AC extract showed the highest antioxidative activity, whereas F-AC extract showed the lowest. For B-AC extract, caffeic acid was isolated by preparative high-performance liquid chromatography and confirmed by liquid chromatography-mass spectrometry and absorption spectroscopy, which showed 1.6% of total polyphenol contents among all methanol extracts.

Optimal Fermentation Conditions of Hyaluronidase Inhibition Activity on Asparagus cochinchinensis Merrill by Weissella cibaria

  • Kim, Minji;Kim, Won-Baek;Koo, Kyoung Yoon;Kim, Bo Ram;Kim, Doohyun;Lee, Seoyoun;Son, Hong Joo;Hwang, Dae Youn;Kim, Dong Seob;Lee, Chung Yeoul;Lee, Heeseob
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.4
    • /
    • pp.701-708
    • /
    • 2017
  • This study was conducted to evaluate the hyaluronidase (HAase) inhibition activity of Asparagus cochinchinesis (AC) extracts following fermentation by Weissella cibaria through response surface methodology. To optimize the HAase inhibition activity, a central composite design was introduced based on four variables: the concentration of AC extract ($X_1$: 1-5%), amount of starter culture ($X_2$: 1-5%), pH ($X_3$: 4-8), and fermentation time ($X_4$: 0-10 days). The experimental data were fitted to quadratic regression equations, the accuracy of the equations was analyzed by ANOVA, and the regression coefficients for the surface quadratic model of HAase inhibition activity in the fermented AC extract were estimated by the F test and the corresponding p values. The HAase inhibition activity indicated that fermentation time was most significant among the parameters within the conditions tested. To validate the model, two different conditions among those generated by the Design Expert program were selected. Under both conditions, predicted and experimental data agreed well. Moreover, the content of protodioscin (a well-known compound related to anti-inflammation activity) was elevated after fermentation of the AC extract at the optimized fermentation condition.