Browse > Article
http://dx.doi.org/10.3746/jkfn.2016.45.4.524

Antioxidative Properties of Asparagus cochinchinensis Root  

Koo, Kyoung Yoon (Department of Food Science and Nutrition and Kimchi Research Institute, Pusan National University)
Kim, Won Baek (Department of Food Science and Nutrition and Kimchi Research Institute, Pusan National University)
Park, So Hae (Department of Food Science and Nutrition and Kimchi Research Institute, Pusan National University)
Kim, Minji (Department of Food Science and Nutrition and Kimchi Research Institute, Pusan National University)
Kim, Bo Ram (Department of Food Science and Nutrition and Kimchi Research Institute, Pusan National University)
Hwang, Jihoe (Department of Food Science and Nutrition and Kimchi Research Institute, Pusan National University)
Kim, Min Jung (Department of Food Science and Nutrition and Kimchi Research Institute, Pusan National University)
Son, Hong Joo (Department of Life Science and Environment Biochemistry, Pusan National University)
Hwang, Dae Youn (Department of Biomaterials Science, Pusan National University)
Kim, Dong Seob (Department of Food Science & Technology, Pusan National University)
Lee, Chung Yeoul (Gangrim Organics)
Lee, Heeseob (Department of Food Science and Nutrition and Kimchi Research Institute, Pusan National University)
Publication Information
Journal of the Korean Society of Food Science and Nutrition / v.45, no.4, 2016 , pp. 524-532 More about this Journal
Abstract
This study was performed to compare the antioxidative activities of methanol extracts from Asparagus cochinchinensis with whole root (W-AC), flesh (F-AC), and root bark (B-AC). To evaluate the antioxidative properties of their methanol extracts, 1,1-diphenyl-2-picrylhydrazyl radical, nitrite, hydroxyl radical, 2,2'-azino-bis(3-ethylbenz thiazoline-6-sulfonate) radical scavenging activities, and contents of total flavonoid and polyphenol contents were measured. B-AC extract showed the highest antioxidative activity, whereas F-AC extract showed the lowest. For B-AC extract, caffeic acid was isolated by preparative high-performance liquid chromatography and confirmed by liquid chromatography-mass spectrometry and absorption spectroscopy, which showed 1.6% of total polyphenol contents among all methanol extracts.
Keywords
Asparagus cochinchinensis; antioxidative activity; polyphenol; caffeic acid;
Citations & Related Records
Times Cited By KSCI : 17  (Citation Analysis)
연도 인용수 순위
1 Koo HN, Jeong HJ, Choi JY, Choi SD, Choi TJ, Cheon YS, Kim KS, Kang BK, Park ST, Chang CH, Kim CH, Lee YM, Kim HM, An NH, Kim JJ. 2000. Inhibition of tumor necrosis factor-${\alpha}$-induced apoptosis by Asparagus cochinchinensis in Hep G2 cells. J Ethnopharmacol 73: 137-143.   DOI
2 Lee SY, Kim SN, Kim JK. 2008. Effects of Asparagus cochinchinensis (Lour.) Merr. on the stimulation of osteoblast differentiation and inhibition of osteoclast generation. J Korean Soc Food Sci Nutr 37: 16-19.   DOI
3 Xiong D, Yu LX, Yan X, Guo C, Xiong Y. 2011. Effects of root and stem extracts of Asparagus cochinchinensis on biochemical indicators related to aging in the brain and liver of mice. Am J Chin Med 39: 719-726.   DOI
4 Zhu GL, Hao Q, Li RT, Li HZ. 2014. Steroidal saponins from the roots of Asparagus cochinchinensis. Chin J Nat Med 12: 213-217.
5 Shen Y, Xu CL, Xuan WD, Li HL, Liu RH, Xu XK, Chen HS. 2011. A new furostanol saponin from Asparagus cochinchinensis. Arch Pharm Res 34: 1587-1591.   DOI
6 Lee DY, Choo BK, Yoon T, Cheon MS, Lee HW, Lee AY, Kim HK. 2009. Anti-inflammatory effects of Asparagus cochinchinensis extract in acute and chronic cutaneous inflammation. J Ethnopharmacol 121: 28-34.   DOI
7 Huang KC. 1993. The pharmacology of Chinese herbs. CRC Press, Boca Raton, FL, USA. p 361.
8 Samad NB, Debnath T, Hasnat A, Pervin M, Kim DH, Jo JE, Park SR, Lim BO. 2014. Phenolic contents, antioxidant and anti-inflammatory activities of Asparagus cochinchinensis (Loureiro) Merrill. J Food Biochem 38: 83-91.   DOI
9 Huang KC. 1993. The pharmacology of Chinese herbs. CRC Press, Boca Raton, FL, USA. p 224.
10 Kim H, Lee E, Lim T, Jung J, Lyu Y. 1998. Inhibitory effect of Asparagus cochinchinensis on tumor necrosis factor-alpha secretion from astrocytes. Int J Immunopharmacol 20: 153-162.   DOI
11 Hatano T, Edamatsu R, Hiramatsu M, Mori A, Fujita Y, Yasuhara T, Yoshida T, Okuda T. 1989. Effects of the interaction of tannins with co-existing substances. VI. Effects of tannins and related polyphenols on superoxide anion radical, and on 1,1-diphenyl-2-picrylhydrazyl radical. Chem Pharm Bull 37: 2016-2021.   DOI
12 Kato H, Lee IE, Chuyen NV, Kim SB, Hayase F. 1987. Inhibition of nitrosamine formation by nondialyzable melanoidins. Agric Biol Chem 51: 1333-1338.
13 Kim DS, Ahn BW, Yeum DM, Lee DH, Kim SB, Park YH. 1987. Degradation of carcinogenic nitrosamine formation factor by natural food components. Bull Korean Fish Soc 20: 463-468.
14 Chung SK, Osawa T, Kawakishi S. 1997. Hydroxyl radicalscavenging effects of spices and scavengers from brown mustard (Brassica nigra). Biosci Biotechnol Biochem J 61: 118-123.   DOI
15 Robyt JF, Mukerjea R. 1994. Separation and quantitative determination of nanogram quantities of maltodextrins and isomaltodextrins by thin-layer chromatography. Carbohydr Res 251: 187-202.   DOI
16 Roberta RE, Pellegrini N, Proteggents A, Pannala A, Yand M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol Med 26: 1231-1237.   DOI
17 Xu ML, Hu JH, Wang L, Kim HS, Jin CW, Cho DH. 2010. Antioxidant and anti-diabetes activity of extracts from Machilus thunbergii S. et Z. Korean J Med Crop Sci 18: 34-39.
18 Gutfinger T. 1981. Polyphenols in olive oils. J Am Oil Chem Soc 58: 966-968.   DOI
19 Choi JJ, Yim SH, Choi JH, Park JH, Nam SH, Lee HC. 2013. Antioxidant activity of Pyrus pyrifolia fruit in different cultivars and parts. Korean J Food Preserv 20: 222-226.   DOI
20 Kim HY, Hwang IG, Kim TM, Park DS, Kim JH, Kim DJ, Lee J, Jeong HS. 2011. Antioxidant and angiotensin converting enzyme I inhibitory activity on different parts of germinated rough rice. J Korean Soc Food Sci Nutr 40: 775-780.   DOI
21 Cho E, Kim S, Bang S, Kim DC, In MJ, Chae HJ. 2014. Biological activity of Aloe vera gel and skin extracts. Korean Soc Biotechnol Bioeng J 29: 437-442.
22 Kim JY, Cho JY, Na HS, Choi GC, Park JS, Lee JH, Jeong SH, Moon JH. 2012. Analysis of the various constituents and comparison of biological activities of different parts of Allium victorialis var. platyphyllum. Korean J Food Sci Technol 44: 100-105.   DOI
23 Park YJ, Park YS, Towantakavanit K, Park JO, Kim YM, Jung KJ, Cho JY, Lee KD, Heo BG. 2009. Chemical components and biological activity of Stauntonia hexaphylla. Korean J Plant Res 22: 403-411.
24 Seo SJ, Kim NW. 2010. Physiological activities of leaf and root extracts from Liriope platyphylla. Korean J Food Preserv 17: 123-130.
25 Kim MS, Yun SH, Na HS, Park HJ, Choi GC, Yang SI, Lee JH. 2013. Chemical compositions and functional characteristics of Korean and imported pomegranate (Punica granatum L.). Korean J Food Preserv 20: 342-347.   DOI
26 Jung GT, Ju IO, Chio DG, Jeong JS, Ryu J, Ko BR, Choi JS, Choi YG. 2005. Chemical characteristics and physiological activities of plums (Oishiwase and Formosa). Korean J Food Sci Technol 37: 816-821.
27 Choi JH, Lee EY, Kim GJ, Park IH, Kim JS, Choi GB, Jung SG, Ham YS. 2006. Physicochemical properties and physiological activities of Ulsan sweet persimmon peel.flesh according to cultivars. J Korean Soc Appl Biol Chem 49: 309-314.
28 Lee YS, Yoon HG, Kim NW. 2010. The physiological activities of ripe fruit of Poncirus trifoliata. Korean J Food Preserv 17: 698-705.
29 Kwak HJ, Kwon YJ, Jeong PH, Kwon JH, Kim HK. 2000. Physiological activity and antioxidative effect of methanol extract from onion (Allium cepa L.). J Korean Soc Food Sci Nutr 29: 349-355.
30 Yang YR, Park YK. 2011. Comparison of antioxidant activities of black onion extracts. Korean J Food Preserv 18: 954-960.   DOI
31 Choi SY, Lim SH, Kim JS, Ha TY, Kim SR, Kang KS, Hwang IK. 2005. Evaluation of the estrogenic and antioxidant activity of some edible and medicinal plants. Korean J Food Sci Technol 37: 549-556.
32 Hertog MGL, Hollman PCH, Katan MB. 1992. Content of potentially anticarcinogenic flavonoids of 28 vegetables and 9 fruits commonly consumed in the Netherlands. J Agric Food Chem 40: 2379-2383.   DOI
33 Humphreys JM, Chapple C. 2002. Rewriting the lignin roadmap. Curr Opin Plant Biol 5: 224-229.   DOI
34 Shin JH, Lee SJ, Kang MJ, Yang SM, Sung NJ. 2009. Biological activities of yuza grown in different areas. J Korean Soc Food Sci Nutr 38: 1485-1491.   DOI
35 Labuza TP, Dugan Jr LR. 1971. Kinetics of lipid oxidation in foods. CRC Crit Rev Food Technol 2: 355-405.   DOI
36 Choi SY, Cho HS, Sung NJ. 2006. The antioxidative and nitrite scavenging ability of solvent extracts from wild grape (Vitis Coignetiea) skin. J Korean Soc Food Sci Nutr 35: 961-966.   DOI
37 Meyer AMBS, Heinonen M, Frankel EN. 1998. Antioxidant interactions of catechin, cyanidin, caffeic acid, quercetin, and ellagic acid on human LDL oxidation. Food Chem 61: 71-75.   DOI
38 Foley S, Navaratnam S, McGarvey DJ, Land EJ, Truscott TG, Rice-Evans CA. 1999. Singlet oxygen quenching and the redox properties of hydroxycinnamic acids. Free Radical Biol Med 26: 1202-1208.   DOI
39 Zhang M, Zhou J, Wang L, Li B, Guo J, Guan X, Han Q, Zhang H. 2014. Caffeic acid reduces cutaneous tumor necrosis factor alpha (TNF-${\alpha}$), IL-6 and IL-$1{\beta}$ levels and ameliorates skin edema in acute and chronic model of cutaneous inflammation in mice. Biol Pharm Bull 37: 347-354.   DOI
40 Chang HT, Chen IL, Chou CT, Liang WZ, Kuo DH, Shieh P, Jan CR. 2013. Effect of caffeic acid on $Ca^{2+}$ homeostasis and apoptosis in SCM1 human gastric cancer cells. Arch Toxicol 87: 2141-2150.   DOI
41 Khan KA, Kumar N, Nayak PG, Nampoothiri M, Shenoy RR, Krishnadas N, Rao CM, Mudgal J. 2013. Impact of caffeic acid on aluminium chloride-induced dementia in rats. J Pharm Pharmacol 65: 1745-1752.   DOI
42 Kim JH, Wang Q, Choi JM, Lee S, Cho EJ. 2015. Protective role of caffeic acid in an $A{\beta}{25-35}$-induced Alzheimer's disease model. Nutr Res Pract 9: 480-488.   DOI
43 Huang Y, Jin M, Pi R, Zhang J, Chen M, Ouyang Y, Liu A, Chao X, Liu P, Liu J, Ramassamy C, Qin J. 2013. Protective effects of caffeic acid and caffeic acid phenethyl ester against acrolein-induced neurotoxicity in HT22 mouse hippocampal cells. Neurosci Lett 535: 146-151.   DOI