• Title/Summary/Keyword: As(V) ion

Search Result 1,276, Processing Time 0.034 seconds

Determination of Theophylline and its Metabolites in Human Urine by High-Performance Liquid Chromatography

  • Kim, Kyeong-Ho;Park, Young-Hwan;Park, Hyo-Kyung;Kim, Ho-Soon;Lee, Min-Hwa
    • Archives of Pharmacal Research
    • /
    • v.19 no.5
    • /
    • pp.396-399
    • /
    • 1996
  • High-performance liquid chromatographic method with UV detecction was developed for the determination of theophylline and its metabolites in human urine using ${beta}$-hydroxyethyl theophylline$({beta} -HET)$ as an internal standard. For extraction of urine sample, quality control sample and xanthine-free blank urine were mixed with decylamine (ion-paring reagent) and ${beta}$-HET. After saturation with ammonium sulfate, the mixture was then extracted with organic solvent at pH values of 4.0-4.5. All separations were performed with ion-pair chromatography using decylamine as an ion-pairing reagent and 3mM sodium acetate buffered mobile phase (pH 4.0) containing 1% (v/v) acetonitrile and 0.75 mM decylamine. The detection limits of theophylline, 1, 3-DMU, 1-MU, 3-MX and 1-MX in human urine were 0.17, 0.17, 0.39, 0.19 and 0.19 ${\mu}g$/ml, based on a signal-to-noise ratios of 3.0. The mean intraday coefficients of variation (C.V.s) of each compound on nine replicates were lower than 2.0%, while mean interday C.V.s on three days were lower than 1.6%. All separations were finished within 40miutes.

  • PDF

Analysis of dominant impurities in Cu and Ta films using SIMS and GDMS (SIMS와 GDMS를 이용한 구리와 탄탈 박막내의 주요불순물 분석)

  • ;Minoru Isshiki
    • Journal of the Korean Vacuum Society
    • /
    • v.13 no.2
    • /
    • pp.79-85
    • /
    • 2004
  • Secondary ion mass spectrometry(SIMS) and glow discharge mass spectrometry(GDMS) were used to determine the impurity concentrations of hydrogen, carbon, and oxygen elements in the Cu and Ta films, and the results of SIMS and GDMS analysis were carefully considered. The Cu and Ta films were deposited on Si (100) substrates at zero substrate bias voltage and a substrate bias voltage of -50 V(Cu films) or -125 V(Ta films) using a non-mass separated ion beam deposition method. As a result of SIMS with Cs+ ion beam, in the case of the Cu and Ta films deposited without the substrate bias voltage, many strong peaks were observed, which is considered to be detected as a the cluster state such as CxHx, OxHx, CxOxHx. All the peaks of SIMS results could be interpreted by the combination of these dominant impurities. Moreover, it was confirmed that the quantitative results of GDMS analysis were accordant to the SIMS results.

Dopant-Activation and Damage-Recovery of Ion-Shower-Doped Poly-Si through $PH_3/H_2$ after Furnace Annealing

  • Kim, Dong-Min;Kim, Dae-Sup;Ro, Jae-Sang;Choi, Kyu-Hwan;Lee, Ki-Yong
    • Journal of Information Display
    • /
    • v.5 no.1
    • /
    • pp.1-6
    • /
    • 2004
  • Ion shower doping with a main ion source of $P_2H_x$ using a source gas mixture of $PH_3/H_2$ was conducted on excimer-laser- annealed (ELA) poly-Si. The crystallinity of the as-implanted samples was measured using a UV-transmittance. The measured value of as-implanted damage was found to correlate well with the one calculated through/obtained from TRIM-code simulation. The sheet resistance was found to decrease as the acceleration voltage increased from 1 kV to 15 kV at a doping time of 1 min. However, it increases as the acceleration voltage increases under severe doping conditions. Uncured damage after furnace annealing is responsible for the rise in sheet resistance.

Adsorption Characteristics of Arsenic using the Recycled Aluminium Oxide (재생 알루미늄 산화물을 이용한 비소 흡착 특성)

  • Min, Kyung-Chul;Kim, Won-Gee;Lee, Seung-Mok;Kim, Keun-Han;Lee, Hee-Yong;Yang, Jae-Kyu;Park, Youn-Jong
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.4
    • /
    • pp.486-490
    • /
    • 2011
  • As(V) adsorption on aluminum oxide powder which was recycled from industrial wastes containing aluminum hydroxide was evaluated. Aluminum oxide powder in this study was prepared by calcinating aluminum hydroxide wastes at$550^{\circ}C$. Spectroscopic analysis indicated that the aluminum hydroxide wastes were changed to aluminum oxide by calcination. Arsenic adsorption isotherm was conducted with variation of ionic strength and multiple-ion systems using Ca(II) and Cu(II). As(V) removal showed typical anionic adsorption characteristics that the removal efficiency decreased with increasing pH in single As(V) system as well as in binary and ternary system. More than 80% of As(V) at an initial concentration of $5{\times}10^{-5}$ M was removed from aluminum oxide powder in As(V) single system. The effect of ionic strength on As(V) adsorption was negligible, which indicated the strong bonding between aluminum oxide powder and As(V). The removal efficiency of As(V) was higher in a binary system with Cu(II) than in a binary system with Ca(II).

Enhancement of Life Time for PCB (Printed Circuit Board) Drill Bit by Nitrogen Ion Implantation

  • Lee, Chan-Young;Lee, Jae-Sang;Kim, Bum-Suk
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.5
    • /
    • pp.206-208
    • /
    • 2008
  • Implantation of metals and ceramics with ions of nitrogen and other species has improved surface properties such as friction, wear and corrosion in numerous industrial applications. In recent years, PCB drills tend to be more minimized increasingly as the electronics components have been more highly accumulated and minimized. Therefore nitrogen ion implantation was performed onto PCB drill (0.15 & 0.3 mm in diameter), in order to investigate mechanical properties of WC-Co cermets surface through Nano-indentation tests. PCB drill was implanted at energy of 70 keV, 90 keV, 120 keV and with the dose range of $1{\times}10^{17}$ and $5{\times}10^{17}\;ions/cm^{2}$. After ion implantation, WC-Co PCB drill bits was tested in actual operating situation to apply cutting tools industry and is concluded that the life time of nitrogen ion implanted PCB drills is one and a half times longer than the unimplanted.

Selective doping of Li-rich layered oxide cathode materials for high-stability rechargeable Li-ion batteries

  • Han, Dongwook;Park, Kwangjin;Park, Jun-Ho;Yun, Dong-Jin;Son, You-Hwan
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.180-186
    • /
    • 2018
  • We report the discovery of Li-rich $Li_{1+x}[(Ni_{0.225}Co_{0.15}Mn_{0.625})_{1-y}V_y]O_2$ as a cathode material for rechargeable lithium-ion batteries in which a small amount of tetravalent vanadium ($V^{4+}$) is selectively and completely incorporated into the manganese sites in the lattice structure. The unwanted oxidation of vanadium to form a $V_2O_5-like$ secondary phase during high-temperature crystallization is prevented by uniformly dispersing the vanadium ions in coprecipitated $[(Ni_{0.225}Co_{0.15}Mn_{0.625})_{1-y}V_y](OH)_2$ particles. Upon doping with $V^{4+}$ ions, the initial discharge capacity (>$275mA\;h\;g^{-1}$), capacity retention, and voltage decay characteristics of the Li-rich layered oxides are improved significantly in comparison with those of the conventional undoped counterpart.

A Study on the Metallic ion Migration Phenomena of PCB (PCB의 금속 이온 마이그레이션 현상에 관한 연구)

  • Hong Won Sik;Kang Bo-Chul;Song Byeong Suk;Kim Kwang-Bae
    • Korean Journal of Materials Research
    • /
    • v.15 no.1
    • /
    • pp.54-60
    • /
    • 2005
  • Recently a lots of problems have observed in high densified and high integrated electronic components. One of them is ion migration phenomena, which induce the electrical short of electrical circuit. ion migration phenomena has been observed in the field of exposing the specific environment and using for a long tin e. This study was evaluated the generation time of ion migration and was investigated properly test method through water drop test and high temperature high humidity test. Also we observed direct causes and confirmed generation mechanism of dendritic growth as we reproduced the ion migration phenomena. We utilized PCB(printed circuit board) having a comb pattern as follows 0.5, 1.0, 2.0 mm pattern distance. Cu, SnPb and Au were electroplated on the comb pattern. 6.5 V and 15 V were applied in the comb pattern and then we measured the electrical short time causing by ion migration. In these results, we examined a difference of ion migration time depending on pattern materials, applied voltage and pattern spacing of PCB conductor.

The Effect of Annealing Methods on Dopant Activation and Damage Recovery of Phosphorous ion Shower Doped Poly-Si (다결정 실리콘 박막 위에 P이온 샤워 도핑 후 열처리 방법에 따르는 도펀트 활성화 및 결함 회복에 관한 효과)

  • Kim, Dong-Min;Ro, Jae-Sang;Lee, Ki-Yong
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.1
    • /
    • pp.24-31
    • /
    • 2005
  • Ion shower doping with a main ion source of $P_2H_x$ using a source gas mixture of $PH_3/H_2$ was conducted on excimer-laser-annealed (ELA) poly-Si.The crystallinity of the as-implanted samples was measured using a UV-transmittance. The measured value using UV-transmittance was found to correlate well with the one measured using Raman Spectroscopy. The sheet resistance decreases as the acceleration voltage increases from 1kV to 15kV at the moderate doping conditions. It, however, increases as the acceleration voltage increases under the severe doping conditions. The reduction in carrier concentration due to electron trapping at uncured damage after activation annealing seems to be responsible for the rise in sheet resistance. Three different annealing methods were investigated in terms of dopant-activation and damage-recovery, such as furnace annealing, excimer laser annealing, and rapid thermal annealing, respectively.

A study on the photoreflectance of B ion implanted GaAs (B 이온을 주입시킨 GaAs의 Photoreflectance에 관한 연구)

  • 최현태;배인호
    • Electrical & Electronic Materials
    • /
    • v.9 no.4
    • /
    • pp.372-378
    • /
    • 1996
  • The phtoreflectance(PR) spectra of B ion implanted semi-insulating(SI) GaAs were studied. Ion implantation was performed by 150keV implantation energy and 1*10/aup 12/-10$^{15}$ ions/c $m^{2}$ doses. Electronic band structure was damaged by ion implantation with above 1*10$^{13}$ ions/c $m^{2}$ dose. When samples were annealed, " peak was observed at 30-40meV below band gap( $E_{g}$). It should be noted that this energy is close to the ionization energies of S $i_{As}$ , and GeAs in G $a_{As}$ which are also found as impurities in LEC GaAs, it is therefore possible that this feature is related to S $i_{As}$ , or G $e_{As}$ and B ions by implanted defect associated with them. From PR spectra of etched samples which is as-implanted by 1*10$^{14}$ and 1*10$^{15}$ ions/c $m^{2}$ dose, the depth of destroyed electronic band structure was from surface to 0.2.mu.m below surface.nic band structure was from surface to 0.2.mu.m below surface.

  • PDF

A Study on Improvement of the Performance of Pulsed AC Ion Bar (1) (바 형태 정전기제거장치의 정전기제거성능 향상을 위한 연구 (1))

  • Lee, Dong Hoon;Choi, Dong Soo;Jung, Yong Chul;Kim, Sang Min
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.3
    • /
    • pp.34-38
    • /
    • 2014
  • In Display such as LCD, LED, and AMOLED or semiconductor related industries are required to have static ionizer in order to produce reliable goods since the ionizer can create balanced ion that is delivered to producing goods to minimize electrical damages when manufacturing. However, the most general type of ionization is called, "Corona Discharge" that has a slight chances to generate unequal and unstable amount of each +/- ion to the target object. Then, the ionization performance will drastically decrease and end up with quality deterioration problem. In this research, our objective to resolve the current issue via applying "Coupling Condenser" on each counter electrodes of Corona discharging type ionizer. The result is that the ion balance was maintained the satisfied range that is within +/-100V when we changed the duty ratio of the High Voltage of Pulse AC about 40 ~ 70%. In addition, when levelling the High Voltage of Pulse AC, the ion balance holds the range within +20 ~ 0V. Even though we have tested the same experiment for a year, we have seen the range changes roughly ${\pm}50V$.