• 제목/요약/키워드: As₄O/sub 6/

검색결과 1,784건 처리시간 0.028초

Glass 위에 증착된 SnO2/Ag/Nb2O5/SiO2/SnO2 다층 투명전도막의 성능지수 (Figure of Merit of SnO2/Ag/Nb2O5/SiO2/SnO2 Transparent Conducting Multilayer Film Deposited on Glass Substrate)

  • 김진균;이상돈;장건익
    • 한국전기전자재료학회논문지
    • /
    • 제30권2호
    • /
    • pp.81-85
    • /
    • 2017
  • $SnO_2/Ag/Nb_2O_5/SiO_2/SnO_2$ multilayer films were prepared on glass substrate by sequential using RF/DC magnetron sputtering at room temperature. The influence of top $SnO_2$ layer thickness on optical and electrical properties of the multilayer films was investigated. Experimentally measured results exhibit transmittances over 84.3 ~ 85.8% at 550 nm wavelength. As the top $SnO_2$ layer thickness increased from 40 to 55 nm, the sheet resistance (Rs) increased from 5.81 to $6.94{\Omega}/sq$. The Haacke's figure of merit (FOM) calculated for the samples with various $SnO_2$ layer thicknesses was a maximum at 45 nm ($35.3{\times}10^{-3}{\Omega}^{-1}$).

금속 알콕시드를 이용한 투명 결정화유리의 저온 합성 (1) Li2O·1.7Al2O3·8.6SiO2 다공성 겔체의 합성 (Low Temperature Preparation of Transparent Glass-Ceramic Using Metal-Alkoxides (1) Synthesis and Properties of Porous Monolithic Gel in Li2O·1.7Al2O3·8.6SiO2)

  • 전경수;탁중재
    • 공업화학
    • /
    • 제18권6호
    • /
    • pp.568-574
    • /
    • 2007
  • 투명결정화 유리의 전구체로서 균열이 없는 $Li_2O1{\cdot}7Al_2O_3{\cdot}8.6SiO_2$ 조성인 다공성 괴상 겔을 formamide를 첨가한 알콕시드 용액으로부터 sol-gel방법으로 합성하였다. 겔 합성에서 겔화 활성화 에너지, 비표면적, 습윤겔의 완전 탈수에 필요한 온도, 기공의 부피 및 기공크기와 분포를 측정하였고, 겔의 결정화온도를 검토하고자 시차열분석을 실시하였다. 겔화의 활성화에너지는 가수분해에 필요한 물의 첨가량에 따라 13~14 kcal/mol 범위를 나타내고, 물의 첨가량이 가수분해시 필요한 이론량의 3배 이상일 경우, $70{\sim}75^{\circ}C$, 건조속도 0.1~0.3 %/h에서는 겔의 균열을 방지할 수 있어 안정한 괴상 겔을 제조할 수 있었다. $180^{\circ}C$에서 건조한 겔체는 비표면적, 기공부피 및 기공크기분포는 $239.40m^2/g$, 0.001~0.03 mL/g 그리고 1~122 nm 반지름의 미세구조로 된 투명 겔체로서 다공질 물질임이 확인되었고, 건조겔의 시차열분석 결과 $800^{\circ}C$ 부근에서 1차 발열피크, $980^{\circ}C$ 부근에서가 2차 발열피크가 확인되어 결정화가 일어남을 알 수 있었다.

Influence of Ionic Liquid as a Template on Preparation of Porous η-Al2O3 to DME Synthesis from Methanol

  • Yoo, Kye-Sang;Lee, Se-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권6호
    • /
    • pp.1628-1632
    • /
    • 2010
  • Porous ${\eta}-Al_2O_3$ was synthesized by modified sol-gel method using ionic liquid as a templating material. The addition of ionic liquid assisted to increase the surface area of alumina. However, the acidity of aluminas prepared with ionic liquids was hardly affected regardless the change of its structural properties. Among the ionic liquids used in this study, 1-butyl-3-methylimidazolium hexafluorophosphate ([Bmim][$PF_6$]) was the most effective ionic liquid to produce porous ${\eta}-Al_2O_3$ particles. The catalytic performance of these aluminas has been investigated in dehydration of methanol to produce dimethyl ether. The alumina prepared with [Bmim][$PF_6$] outperformed the other aluminas except ${\eta}-Al_2O_3$ without modification in this reaction.

Phase Evolution, Thermal Expansion, and Microwave Dielectric Properties of Cordierite-Al2O3 Composite

  • Kim, Shin;Song, Eun-Doe;Hwang, Hae-Jin;Lee, Joo-sung;Yoon, Sang-Ok
    • 한국전기전자재료학회논문지
    • /
    • 제34권5호
    • /
    • pp.337-341
    • /
    • 2021
  • Phase evolution, thermal and microwave dielectric properties of cordierite-Al2O3 composite were investigated. As the content of Al2O3 increased, mullite, sapphirine, and spinel were formed as secondary phases, implying that cordierite may be decomposed by the reaction with Al2O3. All sintered specimens exhibited dense microstructures. The densification occurred through liquid phase sintering. As the content of Al2O3 increased, the thermal expansion coefficient and the dielectric constant increased, whereas the quality factor decreased. The thermal expansion coefficient, the dielectric constant, and the quality factor of the 90 wt% cordierite 10 wt% Al2O3 composite sintered at 1,425℃ were 2.9×10-6 K-1, 5.1, and 34,844 GHz, respectively.

Core-shell 구조의 MCMB/Li4Ti5O12 합성물을 사용한 하이브리드 커패시터의 전기화학적 특성 (Electrochemical Characteristics of Hybrid Capacitor using Core-shell Structure of MCMB/Li4Ti5O12 Composite)

  • 고형신;최정은;이종대
    • Korean Chemical Engineering Research
    • /
    • 제52권1호
    • /
    • pp.52-57
    • /
    • 2014
  • 본 연구에서는 낮은 사이클 안정성을 갖는 MCMB의 단점을 향상시키기 위하여 높은 사이클 안정성과 부피팽창이 없는 장점을 갖는 물질인 $Li_4Ti_5O_{12}$를 코팅하여 core-shell 구조의 $MCMB/Li_4Ti_5O_{12}$를 합성하고 $MCMB/Li_4Ti_5O_{12}$를 음극으로, $LiMn_2O_4$, Active carbon fiber를 양극으로 사용하여 단위 셀을 제조하였다. $LiPF_6$ 염과 EC/DMC/EMC 용매를 전해질로 사용하여 제조한 하이브리드 커패시터 단위 셀로 충방전, 사이클, 순환전압전류, 임피던스 테스트를 진행하여 전기화학적 특성을 평가한 결과, MCMB-$Li_4Ti_5O_{12}/LiMn_2O_4$ 전극을 사용한 하이브리드 커패시터가 MCMB 전극의 하이브리드 커패시터 보다 좋은 충/방전 성능을 보였고, 67 Wh/kg, 781 W/kg의 에너지밀도와 출력밀도를 나타내었다.

Al2O3와 TiO2의 반응소결로 제조한 Al2TiO5-기계가공성 세라믹스 (Al2TiO5-machinable Ceramics Made by Reactive Sintering of Al2O3 and TiO2)

  • 박재현;이원재;김일수
    • 한국세라믹학회지
    • /
    • 제47권6호
    • /
    • pp.498-502
    • /
    • 2010
  • Aluminium titanate($Al_2TiO_5$) has extremely anisotropic thermal expansion properties in single crystals, and polycrystalline material spontaneously microcracks in the cooling step after sintering process. These fine intergranular cracks limit the strength of the material, but provide an effective mechanism for absorbing strain energy during thermal shock and preventing catastrophic crack propagation. Furthermore, since machinable BN-ceramics used as an insulating substrate in current micro-electronic industry are very expensive, the development of new low-cost machinable substrate ceramics are consistently required. Therefore, cheap $Al_2TiO_5$-machinable ceramics was studied for the replacement of BN ceramics. $Al_2O_3-Al_2TiO_5$ ceramic composite was fabricated via in-situ reaction sintering. $Al_2O_3$ and $TiO_2$ powders were mixed with various mol-ratio and sintered at 1400 to $1600^{\circ}C$ for 1 h. Density, hardness and strength of sintered ceramics were systematically measured. Phase analysis and microstructures were observed by XRD and SEM, respectively. Machinability of each specimens was tested by micro-hole machining. The results of research showed that the $Al_2TiO_5$-composites could be used for low-cost machinable ceramics.

Low Temperature Sintering and Dielectric Properties of BiNbO4 and ZnNb2O6 Ceramics with Zinc Borosilicate Glass

  • Kim, Kwan-Soo;Kim, Shin;Yoon, Sang-Ok;Park, Jong-Guk
    • Transactions on Electrical and Electronic Materials
    • /
    • 제8권5호
    • /
    • pp.201-205
    • /
    • 2007
  • Low temperature sintering behavior and microwave dielectric properties of the $BiNbO_{4^-}$ and the $ZnNb_2O_{6^-}zinc$ borosilicate glass(ZBS) systems were investigated with a view to applying the composition to LTCC technology. The addition of $10{\sim}30$ wt% ZBS in both systems ensured successful sintering below $900^{\circ}C$. For the $BiNbO_{4^-}ZBS$ system, the sintering was completed when 15 wt% ZBS was added whereas 25 wt% ZBS was necessary for the $ZnNb_2O_{6^-}zinc$ system. Secondary phase was not observed in the $BiNbO_{4^-}ZBS$ system but a small amount of $ZnNb_2O_6$ with the willemite structure as the secondary phase was observed in the $ZnNb_2O_{6^-}ZBS$ system. In terms of dielectric properties, the application of the $BiNbO_{4^-}$ and the $ZnNb_2O_{6^-}ZBS$ systems sintered at $900^{\circ}C$ to LTCC were shown to be appropriate; $BiNbO_{4^-}15$ wt% ZBS($\varepsilon_r=25,\;Q{\times}f\;value=3,700GHz,\;\tau_f=-32ppm/^{\circ}C$) and $ZnNb_2O_{6^-}25$ wt% ZBS($\varepsilon_r=15.8,\;Q{\times}f\;value=5,400GHz,\;\tau_f=-98ppm/^{\circ}C$).

Electrooxidation of tannery wastewater with continuous flow system: Role of electrode materials

  • Tien, Tran Tan;Luu, Tran Le
    • Environmental Engineering Research
    • /
    • 제25권3호
    • /
    • pp.324-334
    • /
    • 2020
  • Tannery wastewater is known to contain high concentrations of organic compounds, pathogens, and other toxic inorganic elements such as heavy metals, nitrogen, sulfur, etc. Biological methods such as aerobic and anaerobic processes are unsuitable for tannery wastewater treatment due to its high salinity, and electrochemical oxidation offers a promising method to solve this problem. In this study, raw tannery wastewater treatment using DSA® Ti/RuO2, Ti/IrO2 and Ti/BDD electrodes with continuous flow systems was examined. Effects of current densities and electrolysis times were investigated, to evaluate the process performance and energy consumption. The results showed that a Ti/BDD electrode is able to reach higher treatment efficiency than Ti/IrO2, and Ti/RuO2 electrodes across all parameters, excluding Total Nitrogen. The main mechanism of tannery wastewater oxidation at a Ti/BDD electrode is based on direct oxidation on the electrode surface combined with the generation of oxidants such as °OH and Cl2, while at DSA® Ti/RuO2 and Ti/IrO2 electrodes, the oxidation mechanisms are based on the generation of chlorine. After treatment, the effluents can be discharged to the environment after 6-12 h of electrolysis. Electrooxidation thus offers a promising method for removing the nutrients and non-biodegradable organic compounds in tannery wastewater.

Novel Synthesis of MnO2-SiC Fiber-TiO2 Ternary Composite and Effective Photocatalytic Degradation with Standard Dyes

  • Latiful Kabir;Yeon Woo Choi;Yun Seo Shin;Yeon Ji Shin;Geun Chan Kim;Jun Hyeok Choi;Jo Eun Kim;Young Jun Joo;Kwang Youn Cho;Hyuk Kim;Je-Woo Cha;Won-Chun Oh
    • 한국재료학회지
    • /
    • 제34권6호
    • /
    • pp.275-282
    • /
    • 2024
  • In this work, we investigated the photo-degradation performance of MnO2-SiC fiber-TiO2 (MnO2-SiC-TiO2) ternary nanocomposite according to visible light excitation utilizing methylene blue (MB) and methyl orange (MO) as standard dyes. The photocatalytic physicochemical characteristics of this ternary nanocomposite were described by X-ray diffraction (XRD), scanning electron microscopy (SEM), tunneling electron microscopy (TEM), ultraviolet-visible (UV-vis), diffuse reflectance spectroscopy (DRS), electrochemical impedance spectroscopy (EIS), photocurrent and cyclic voltammogram (CV) test. Photolysis studies of the synthesized MnO2-SiC-TiO2 composite were conducted using standard dyes of MB and MO under UV light irradiation. The experiments revealed that the MnO2-SiC-TiO2 exhibits the greatest photocatalytic dye degradation performance of around 20 % with MB, and of around 10 % with MO, respectively, within 120 min. Furthermore, MnO2-SiC-TiO2 showed good stability against photocatalytic degradation. The photocatalytic efficiency of the nanocomposite was indicated by the adequate photocatalytic reaction process. These research results show the practical application potential of SiC fibers and the performance of a photocatalyst composite that combines these fibers with metal oxides.

H2O2 Generating Ability and Multi-Drug Resistance of Lactic Acid Bacteria Required for Long-Term Inpatient Treatment with Antibiotic Resistance

  • Yuk, Young Sam
    • International journal of advanced smart convergence
    • /
    • 제11권4호
    • /
    • pp.227-239
    • /
    • 2022
  • Purpose: In our study, in order to find lactic acid bacteria (LAB) with multi-drug resistance to antibiotics, we isolated 140 strains from 15 types of kimchi commercially available in Korea and 20 types of Kimchi made at home from January to December in 2016, and investigated their H2O2 generating ability and multi-drug resistance to antibiotics. Methods: In order to observe the H2O2 generation ability of LAB, we performed the experiment with methods such as Rabe, Hillier, and Kang. To test the antibacterial susceptibility of LAB, we used the disc agar diffusion method using MRS agar (Difco, USA) according to the CLSI and WHO test methods. There are 18 types of antibiotic discs used. Results: Out of the total numbers of 140 strains, 6 strains of Ent. Faecium, 25 strains of L. plantarum, 1 strain of L. rhamnosus, 3 strains of L. sakei, 1 strain of L. acidophilus, 1 strains St. thermophilus, and 7 of unidentified strains generated H2O2. The antibiotic susceptibility of Ent. Faecium indicated SXT, OX, NA, and E; and the antibiotic susceptibility of L. plantarum indicated NA; and the antibiotic susceptibility of St. thermophilus indicated NA, CC, RA, CTT, CM, and P ; and the antibiotic susceptibility of L. rhamnosus indicated SXT, VA, NA and CTT; and the antibiotic susceptibility of 6 strains of L. sakei indicated SXT, OX, NOR, NA, CTT and CIP, all indicating antibiotic resistance. In the case of multi-drug resistance to antibiotics for 53 strains of L. antarum, 8-drug resistance was the most common with 25 strains, followed by 7-drug-resistant strains with 18 strains, 9-drug-resistant strains with 4 strains, 6-drug-resistant strains with 3 strains, 5-drug-resistant strains with 2 strains, and 17-drug-resistant strains with 1 strain. In the case of multi-drug resistance to antibiotics for Ent. Faecium 27 strains, 9-drug resistance was most commonly identified as 9 strains, 8-drug resistance was identified as 6 strains, 7- and 11 drug resistances were identified as 4 strains each, and 4- and 6-drug resistances were identified as 1 strain each. Conclusion: Ent. Faecium, L. plantarum, L. rhamnosus, L. sakei, and St. thermophilus, shown to have anantibacterial activity in previous studies on LAB and shown to have and H2O2 generating ability, antibiotic resistance and multi-drug resistance in this study, are expected to be able to play an excellent role for long-term inpatients to use as an alternative to antibiotics and to cope with emerging antibiotic resistance.