• Title/Summary/Keyword: As₄O/sub 6/

Search Result 1,774, Processing Time 0.027 seconds

Structural and Thermal Analysis and Membrane Characteristics of Phosphoric Acid-doped Polybenzimidazole/Strontium Titanate Composite Membranes for HT-PEMFC Applications

  • Selvakumar, Kanakaraj;Kim, Ae Rhan;Prabhu, Manimuthu Ramesh;Yoo, Dong Jin
    • Composites Research
    • /
    • v.34 no.6
    • /
    • pp.373-379
    • /
    • 2021
  • A series of novel PBI/SrTiO3 nanocomposite membranes composed of polybenzimidazole (PBI) and strontium titanate (SrTiO3) with a perovskite structure were fabricated with various concentrations of SrTiO3 through a solution casting method. Various characterization techniques such as proton nuclear magnetic resonance, thermogravimetric analysis, atomic force microscopy (AFM) and AC impedance spectroscopy were used to investigate the chemical structure, thermal, phosphate absorption and morphological properties, and proton conductivity of the fabricated nanocomposite membranes. The optimized PBI/SrTiO3-8 polymer nanocomposite membrane containing 8wt% of SrTiO3 showed a higher proton conductivity of 7.95 × 10-2 S/cm at 160℃ compared to other nanocomposite membranes. The PBI/SrTiO3-8 composite membrane also showed higher thermal stability compared to pristine PBI. In addition, the roughness change of the polymer composite membrane was also investigated by AFM. Based on these results, nanocomposite membranes based on perovskite structures are expected to be considered as potential candidates for high-temperature PEM fuel cell applications.

Synthesis and Investigation of LiVPO4O1-xFxvia Control of the Fluorine Content for Cathode of Lithium-ion Batteries (플루오린 함량 제어를 통한 LiVPO4O1-xFx 합성 및 리튬 이차전지 양극소재 전기화학 특성 분석)

  • Minkyung Kim;Dong-hee Lee;Changyu Yeo;Sooyeon Choi;Chiwon Choi;Hyunmin Yoon
    • Journal of Powder Materials
    • /
    • v.30 no.6
    • /
    • pp.516-520
    • /
    • 2023
  • Highly safe lithium-ion batteries (LIBs) are required for large-scale applications such as electrical vehicles and energy storage systems. A highly stable cathode is essential for the development of safe LIBs. LiFePO4 is one of the most stable cathodes because of its stable structure and strong bonding between P and O. However, it has a lower energy density than lithium transition metal oxides. To investigate the high energy density of phosphate materials, vanadium phosphates were investigated. Vanadium enables multiple redox reactions as well as high redox potentials. LiVPO4O has two redox reactions (V5+/V4+/V3+) but low electrochemical activity. In this study, LiVPO4O is doped with fluorine to improve its electrochemical activity and increase its operational redox potential. With increasing fluorine content in LiVPO4O1-xFx, the local vanadium structure changed as the vanadium oxidation state changed. In addition, the operating potential increased with increasing fluorine content. Thus, it was confirmed that fluorine doping leads to a strong inductive effect and high operating voltage, which helps improve the energy density of the cathode materials.

First-principles studies on mechanical, electronic, magnetic and optical properties of new multiferroic members BiLaFe2O6 and Bi2FeMnO6: Originated from BiFeO3

  • Tuersun, Yisimayili;Rouzhahong, Yilimiranmu;Maimaiti, Maihemuti;Salamu, Abidiguli;Xiaerding, Fuerkaiti;Mamat, Mamatrishat;Jing, Qun
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1473-1479
    • /
    • 2018
  • Recently multiferroic materials have attract great interest for the applications on memorial, spintronic and magneto-electric sensor devices for their spontaneous magneto-electric coupling properties. Research and development of the various kinds of multiferroics are indispensable factor for a new generation multifunctional materials. In this research, mechanical, electronic, magnetic and nonlinear optical properties of La modified $BiLaFe_2O_6$ (BLFO) and Mn modified $Bi_2FeMnO_6$ (BFMO) were studied as new members of multiferroic $BiFeO_3$ (BFO) series by first-principles calculations, and compared with the pure BFO to discover the optimized properties. Our results show that BLFO and BFMO have good mechanical stability as revealed by elastic constants that satisfy the stability criteria. All these compounds exhibit anisotropic and ductile nature. The enhanced properties by La and Mn substitution, such as increased hardness, improved magnetism, decreased band gap and comparable second harmonic generation responses reveal that the new multiferroic members of BLFO and BFMO would get wider application than their BFO counterpart. Our study is expected to providing an appropriate mechanical reference data as guidance for engineering of high efficiency multifunctional devices with the BFO series.

Tailoring Low-field Strain Properties of [0.97Bi1/2(Na0.78K0.22)1/2TiO3-0.03LaFeO3]-Bi1/2(Na0.82K0.18)1/2TiO3 Lead-Free Relaxor/Ferroelectric Composites (무연 완화형/정규 강유전체 복합소재 [0.97Bi1/2(Na0.78K0.22)1/2TiO3-0.03LaFeO3]-Bi1/2(Na0.82K0.18)1/2TiO3의 저전계 전계유기 변형 특성 연구)

  • Hong, Chang-Hyo;Kang, Jin-Kyu;Jo, Wook;Lee, Jae-Shin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.6
    • /
    • pp.342-347
    • /
    • 2016
  • We investigated the effect of $Bi_{1/2}(Na_{0.82}K_{0.18})_{1/2}TiO_3$ (BNKT) modification on the ferroelectric and electric-field-induced strain (EFIS) properties of lead-free $0.97Bi_{1/2}(Na_{0.82}K_{0.18})_{1/2}TiO_3-0.03LaFeO_3$ (BNKTLF) ceramics as a function of BNKT content (x= 0, 0.1, 0.2, 0.3, 0.5, and 1). BNKT-modified BNKTLF powders were synthesized using a conventional solid-state reaction method. As the BNKT content x increased from 0 to 1 the normalized electric-field-induced strain ($S_{max}/E_{max}$) was observed to increase at relatively low fields, i.e., below the poling field. Moreover, BNKTLF-30BNKT showed about 460 pm/V as low as at 3 kV/mm, which is a considerably high value among the lead-free systems reported so far. Consequently, it was confirmed that ceramic-ceramic composite, a mixture of an ergodic relaxor matrix and embedded ferroelectric seeds, is a salient way to make lead-free piezoelectrics practical with enhanced EFIS at low field as well as less hysterical.

Microwave Dielectric Properties of Ca(Li1/4Nb3/4)O3-CaTiO3 Ceramics added with Zinc-borosilicate Glass Frit (Zinc-borosilicate Glass Frit 첨가에 따른 Ca(Li1/4Nb3/4)O3-CaTiO3 세라믹스의 마이크로파 유전 특성)

  • Yoon Sang-Ok;Kim Kwan-Soo;Jo Tae-Hyun;Shim Sang-Heung;Park Jong-Guk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.6
    • /
    • pp.524-530
    • /
    • 2006
  • $xCa(Li_{1/4}Nb_{3/4})O_{3}-(1-x)CaTiO_{3}$ ceramics were sintered under the presence of zinc-borosilicate(ZBS) glass and resultant microwave dielectric properties were investigated with a view to applying the composition to low-temperature co-fired ceramic(LTCC) technology. The addition of $5{\sim}15wt%$ ZBS glass ensured successful sintering below $900\;^{\circ}C$. In general, increased addition of ZBS glass increased sinterability but it decreased the quality factor($Q{\times}f_{0}$) significantly due to the formation of an excessive liquid and second phases. As for the addition of $CaTiO_3$, the dielectric constant(${\epsilon}_r$) and temperature coefficient of resonant frequency(${\tau}_f$) increased, while the quality factor($Q{\times}f_{0}$) did not show an apparent change. The sintered $0.9Ca(Li_{1/4}Nb_{3/4})O_{3}-0.1CaTiO_{3}$ specimen at $900\;^{\circ}C$ with 10 wt% ZBS glass demonstrated 39.6 in dielectric constant(${\epsilon}_r$), 4,400 in quality factor$(Q{\times}f_{0}),\;and\;-11ppm/^{\circ}C$ in temperature coefficient of resonant frequency(${\tau}_f$).

Grain growth behavior of porous Al2O3 with addition of La2O3 prepared via freeze-casting (동결주조로 성형한 La2O3가 첨가된 Al2O3 다공체의 소결 중 입자성장 거동)

  • Kim, Sung-Hyun;Woo, Jong-Won;Jeon, Sang-Chae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.6
    • /
    • pp.231-238
    • /
    • 2022
  • To secure the mechanical strength of porous Al2O3 ceramics, which can be utilized for filters and catalyst supports is essential for their functionality and durability. Superior mechanical strength would be obtained by tailoring the densification and grain growth during sintering. This study deals with grain growth behavior of a freeze-casted Al2O3 with addition of La2O3. In a temperature range between 1400 and 1600℃, variations of average grain size with sintering time and temperature were observed and analyzed with Gtn-G0n = kt and with k = k0exp(-Ea/RT). As a result, n value and activation energy (Ea) for grain growth were calculated as 3 and 489.09 kJ/mol, respectively. These commonly confirms retardation effect of the La addition during sintering of Al2O3 porous structure. More accurate analysis on the La effect can be followed to provide useful guidance for the selection of additives for better mechanical strength in Al2O3 porous structures.

Structure and Microwave Dielectric Characteristics of Ba6-3x(Sm1-yNdy)8+2x(Ti0.95Sn0.05)18O54 Ceramics as a Function Of Sintering Time

  • Li, Yi;Chen, Xiang Ming
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.4
    • /
    • pp.360-364
    • /
    • 2003
  • Effects of sintering time upon the structures and microwave dielectric characteristics of co-substituted $Ba_{6-3x}$/S $m_{8+}$2x/ $Ti_{18}$ $O_{54}$ ceramics (x=2/3) were investigated. Prolonged sintering had significant effects upon the qf value and temperature coefficient, and a high Qf value (10,600 GHz) was obtained in the present ceramics combined with high-$\varepsilon$ (80) and near-zero temperature coefficient.t..

Photocatalayst and Decomposition Properties of TiO2 and TiO2-CdS Powders Prepared by Supercritical Fluid Method (초임계 유체법으로 제조한 TiO2 및 TiO2-CdS계 광촉매의 분해물성 연구)

  • 전일수;황수현;박상준;길현식;조승범;전명석;임대영
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.6
    • /
    • pp.481-484
    • /
    • 2004
  • TiO$_2$ and TiO$_2$-CdS powders which were expected to be highly activated photocatalysts were prepared using supercritical fluid method (SCF). The prepared photocatalyst TiO$_2$ powders were crystalline of anatase and ultrafine spherical powders with large specific surface area. When photodecompositoion reaction was done with TiO$_2$ powders prepared by SCF as a photocatalyst in DCA (Dichloroactic Acid) solution, a hazardous organic compound, the photocatlyst, properties of TiO$_2$ powders prepared by SCF were better than that of commercial TiO$_2$ powders.

Effect of Process Parameters on Microhardness of Ni-Al2O3 Composite Coatings (Ni-Al2O3 복합코팅의 마이크로 경도에 대한 공정변수의 영향)

  • Jin, Yeung-Jun;Park, Simon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_2
    • /
    • pp.1037-1045
    • /
    • 2022
  • In this study, nanoscale Al2O3 ceramic particles were used due its exceptionally high hardness characteristics, chemical stability, and wear resistance properties. These nanoparticles will be used to investigate the optimal process conditions for the electro co-deposition of the Ni-Al2O3 composite coatings. A Watts bath electrolytic solution of a controlled composition along with a fixed agitation speed was used for this study. Whereas the current density, the pH value, temperature and concentration of the nano Al2O3 particles of the electrolyte were designated as the manipulative variables. The experimental design method was based on the orthogonal array to find the optimum processing parameters for the electro co-deposition of Ni-Al2O3 composite coatings. The result of confirmation experimental based on the optimal processing condition through the analysis of variance ; EDX analysis found that the ratio of alumina increased to 8.65 wt.% and subsequently the overall hardness increased to 983 Hv. Specially, alumina were evenly distributed on Nickel matrix and particles were embedded more firmly and finely in Nickel matrix.

Piezoelectric and Dielectric Properties of (Na,K,Li)(Nb,Sb,Ta)O3 Ceramics as a Function of Fe2O3 Addition (Fe2O3첨가에 따른 (Na,K,Li)(Nb,Sb,Ta)O3계 세라믹스의 압전 및 유전 특성)

  • Lee, Gwang-Min;Shin, Sang-Hoon;Yoo, Ju-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.9
    • /
    • pp.555-560
    • /
    • 2014
  • In this paper, in order to develop outstanding Pb-free composition ceramics, the $Fe_2O_3$-doped ($Na_{0.525}K_{0.443}Li_{0.037}$)($Nb_{0.883}Sb_{0.08}Ta_{0.037}$)$O_3$ + 0.3 wt% $Bi_2O_3$ + x wt% $Fe_2O_3$ (x= 0~1.0 wt%)(abbreviated as NKL-NST) lead-free piezoelectric ceramics have been synthesized using the ordinary solid state reaction method. The effect of $Fe_2O_3$-doping on their microstructure and electrical properties were investigated. XRD diffraction pattern studies confirm that $Fe_2O_3$ completely diffused into the NKL-NST lattice to form a new stable soild solution with $Fe^{3+}$ entering the $Nb^{5+}$, $Sb^{5+}$ and $Ta^{5+}$ of B-site. And, phase structure of all the ceramics exhibited pure perovskite phase and no secondary phase was found in the ceramics. The ceramics doped with 0.6 wt% $Fe_2O_3$ have the optimum values of piezoelectric constant($d_{33}$), planar piezoelectric coupling coefficient($k_p$) and mechanical quality factor($Q_m$) : $d_{33}$ = 233 [pC/N], $k_p$= 0.44, $Q_m$= 95. These results indicate that the ($Na_{0.525}K_{0.443}Li_{0.037}$)($Nb_{0.883}Sb_{0.08}Ta_{0.037}$)$O_3$ +0.3 wt% $Bi_2O_3$ + 0.6 wt% $Fe_2O_3$ ceramic is a promising candidate for lead-free piezoelectric ceramics.