Browse > Article
http://dx.doi.org/10.4313/JKEM.2016.29.6.342

Tailoring Low-field Strain Properties of [0.97Bi1/2(Na0.78K0.22)1/2TiO3-0.03LaFeO3]-Bi1/2(Na0.82K0.18)1/2TiO3 Lead-Free Relaxor/Ferroelectric Composites  

Hong, Chang-Hyo (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology)
Kang, Jin-Kyu (School of Materials Science and Engineering, University of Ulsan)
Jo, Wook (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology)
Lee, Jae-Shin (School of Materials Science and Engineering, University of Ulsan)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.29, no.6, 2016 , pp. 342-347 More about this Journal
Abstract
We investigated the effect of $Bi_{1/2}(Na_{0.82}K_{0.18})_{1/2}TiO_3$ (BNKT) modification on the ferroelectric and electric-field-induced strain (EFIS) properties of lead-free $0.97Bi_{1/2}(Na_{0.82}K_{0.18})_{1/2}TiO_3-0.03LaFeO_3$ (BNKTLF) ceramics as a function of BNKT content (x= 0, 0.1, 0.2, 0.3, 0.5, and 1). BNKT-modified BNKTLF powders were synthesized using a conventional solid-state reaction method. As the BNKT content x increased from 0 to 1 the normalized electric-field-induced strain ($S_{max}/E_{max}$) was observed to increase at relatively low fields, i.e., below the poling field. Moreover, BNKTLF-30BNKT showed about 460 pm/V as low as at 3 kV/mm, which is a considerably high value among the lead-free systems reported so far. Consequently, it was confirmed that ceramic-ceramic composite, a mixture of an ergodic relaxor matrix and embedded ferroelectric seeds, is a salient way to make lead-free piezoelectrics practical with enhanced EFIS at low field as well as less hysterical.
Keywords
Piezoelectric; Ceramics; Ferroelectric; Bismuth sodium titanate; Perovskite; Composite;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, K. Wang, and J. Rodel, J. Electroceram., 29, 71 (2012). [DOI: http://dx.doi.org/10.1007/s10832-012-9742-3]   DOI
2 S. H. Shin and J. H. Yoo, Trans. Electr. Electron. Mater., 15, 226 (2014). [DOI: http://dx.doi.org/10.4313/TEEM.2014.15.4.226]   DOI
3 J. Rodel, K. G. Webber, R. Dittmer, W. Jo, M. Kimura, and D. Damjanovic, J. Eur. Ceram. Soc., 35, 1659 (2015). [DOI: http://dx.doi.org/10.1016/j.jeurceramsoc.2014.12.013]   DOI
4 C. H. Hong, H. S. Han, J. S. Lee, K. Wang, F. Z. Yao, J. F. Li, J. H. Gwon, N. V. Quyet, J. K. Jung, and W. Jo, J. Sensor Sci. & Tech., 24, 228 (2015). [DOI: http://dx.doi.org/10.5369/JSST.2015.24.4.228]   DOI
5 C. H. Hong, H. P. Kim, B. Y. Choi, H. S. Han, J. S. Son, C. W. Ahn, and W. Jo, J. Materiomics, 2, 1 (2016). [DOI: http://dx.doi.org/10.1016/j.jmat.2015.12.002]   DOI
6 Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, Nature, 432, 84 (2004). [DOI: http://dx.doi.org/10.1038/nature03028]   DOI
7 T. Takenaka and H. Nagata, J. Eur. Ceram. Soc., 25, 2693 (2005). [DOI: http://dx.doi.org/10.1016/j.jeurceramsoc.2005.03.125]   DOI
8 T. R. Shrout and S. J. Zhang, J. Electroceram., 19, 113 (2007). [DOI: http://dx.doi.org/10.1007/s10832-007-9047-0]   DOI
9 S. Zhang, R. Xia, and T. R. Shrout, J. Electroceram., 19, 251 (2007). [DOI: http://dx.doi.org/10.1007/s10832-007-9056-z]   DOI
10 W. Liu and X. Ren, Phys. Rev. Lett., 103, 257602 (2009). [DOI: http://dx.doi.org/10.1103/PhysRevLett.103.257602]   DOI
11 J. Rodel, W. Jo, K.T.P. Seifert, E. M. Anton, T. Granzow, and D. Damjanovic, J. Am. Ceram. Soc., 92, 1153 (2009). [DOI: http://dx.doi.org/10.1111/j.1551-2916.2009.03061.x]   DOI
12 K. Wang and J. F. Li. J. Adv. Ceram., 1, 24 (2012). [DOI: http://dx.doi.org/10.1007/s40145-012-0003-3]   DOI
13 J. F. Li, K. Wang, F. Y. Zhu, L. Q. Cheng, and F. Z. Yao, J. Am. Ceram. Soc., 96, 3677 (2013). [DOI: http://dx.doi.org/10.1111/jace.12715]   DOI
14 B. Malic, J. Koruza, J. Hrescak, J. Bernard, K. Wang, J. G. Fisher, and A. Bencan, Materials, 8, 8117 (2015). [DOI: http://dx.doi.org/10.3390/ma8125449]   DOI
15 S. G. Bae, H. G. Shin, K. H. Chung, J. H. Yoo, and I. H. Im, Trans. Electr. Electron. Mater., 16, 179 (2015). [DOI: http://dx.doi.org/10.4313/TEEM.2015.16.4.179]   DOI
16 S. T. Zhang, A. B. Kounga, E. Aulbach, H. Ehrenberg, and J. Roodel, Appl. Phys. Lett., 91, 112906 (2007). [DOI: http://dx.doi.org/10.1063/1.2783200]   DOI
17 A. Hussain, C. W. Ahn, J. S. Lee, A. Ullah, and I. W. Kim, Sens. Actuat. A, 158, 84 (2010). [DOI: http://dx.doi.org/10.1016/j.sna.2009.12.027]   DOI
18 K. N. Pham, A. Hussain, C. W. Ahn, W. Kim, S. J. Jeong, and J. S. Lee, Mater. Lett., 64, 2219 (2010). [DOI: http://dx.doi.org/10.1016/j.matlet.2010.07.048]   DOI
19 V. Q. Nguyen, H. S. Han, K. J. Kim, D. D. Dang, K. K. Ahn, and J. S. Lee, J. Alloys Compd., 511, 237 (2012). [DOI: http://dx.doi.org/10.1016/j.jallcom.2011.09.043]   DOI
20 H. S. Han, W. Jo, J. K. Kang, C. W. Ahn, I. W. Kim, K. K. Ahn, and J. S. Lee, J. Appl. Phys., 113, 154102 (2013). [DOI: http://dx.doi.org/10.1063/1.4801893]   DOI
21 D. S. Lee, D. H. Lim, M. S. Kim, K. H. Kim, and S. J. Jeong, Appl. Phys. Lett., 99, 062906 (2011). [DOI: http://dx.doi.org/10.1063/1.3621878]   DOI
22 D. S. Lee, S. J. Jeong, M. S. Kim, and J. H. Koh, J. Appl. Phys., 112, 124109 (2012). [DOI: http://dx.doi.org/10.1063/1.4770372]   DOI
23 C. Groh, D. J. Franzbach, W. Jo, K. G. Webber, J. Kling, L. A. Schmitt, H. J. Kleebe, S. J. Jeong, J. S. Lee, and J. Rodel, Adv. Funct. Mater., 24, 356 (2014). [DOI: http://dx.doi.org/10.1002/adfm.201302102]   DOI
24 C. Groh, W. Jo, and J. Rodel, J. Am. Ceram. Soc., 97, 1465 (2014). [DOI: http://dx.doi.org/10.1111/jace.12783]   DOI
25 C. Groh, W. Jo, and J. Rodel, J. Appl. Phys., 115, 234107 (2014). [DOI: http://dx.doi.org/10.1063/1.4876680]   DOI
26 H. Zhang, C. Groh, Q. Zhang, W. Jo, K. G. Webber, and J. Rodel, Adv. Electr. Mater., 1, 1500018 (2015).   DOI
27 W. Jo and J. Rodel, Appl. Phys. Lett., 99, 042901 (2011). [DOI: http://dx.doi.org/10.1063/1.3615675]   DOI