Browse > Article
http://dx.doi.org/10.7234/composres.2021.34.6.373

Structural and Thermal Analysis and Membrane Characteristics of Phosphoric Acid-doped Polybenzimidazole/Strontium Titanate Composite Membranes for HT-PEMFC Applications  

Selvakumar, Kanakaraj (Department of Life Science, Jeounbuk National University)
Kim, Ae Rhan (Department of Life Science, Jeounbuk National University)
Prabhu, Manimuthu Ramesh (Department of Physics, Alagappa University)
Yoo, Dong Jin (Department of Life Science, Jeounbuk National University)
Publication Information
Composites Research / v.34, no.6, 2021 , pp. 373-379 More about this Journal
Abstract
A series of novel PBI/SrTiO3 nanocomposite membranes composed of polybenzimidazole (PBI) and strontium titanate (SrTiO3) with a perovskite structure were fabricated with various concentrations of SrTiO3 through a solution casting method. Various characterization techniques such as proton nuclear magnetic resonance, thermogravimetric analysis, atomic force microscopy (AFM) and AC impedance spectroscopy were used to investigate the chemical structure, thermal, phosphate absorption and morphological properties, and proton conductivity of the fabricated nanocomposite membranes. The optimized PBI/SrTiO3-8 polymer nanocomposite membrane containing 8wt% of SrTiO3 showed a higher proton conductivity of 7.95 × 10-2 S/cm at 160℃ compared to other nanocomposite membranes. The PBI/SrTiO3-8 composite membrane also showed higher thermal stability compared to pristine PBI. In addition, the roughness change of the polymer composite membrane was also investigated by AFM. Based on these results, nanocomposite membranes based on perovskite structures are expected to be considered as potential candidates for high-temperature PEM fuel cell applications.
Keywords
Polybenzimidazole; Perovskite structure; Nanocomposite membrane; Thermal stability;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kim, A.R., Gabunada, J.C., and Yoo, D.J., "Amelioration in Physicochemical Properties and Single Cell Performance of Sulfonated Poly(ether ether ketone) Block Copolymer Composite Membrane Using Sulfonated Carbon Nanotubes for Intermediate Humidity Fuel Cells," International Journal of Energy Research, Vol. 43, 2019, pp. 2974-2989.   DOI
2 Kawahara, M., Morita, J., Rikukawa, M., and Ogata, N., "Synthesis and Proton Conductivity of Thermally Stable Polymer Electrolyte: Poly(benzimidazole) Complexes with Strong Acid Molecules," Electrochimica Acta, Vol. 45, 2000, pp. 1395-1398.   DOI
3 Tanaka, R., Yamamoto, H., Kawamura, S., and Iswase, T., "Proton Conducting Behavior of Poly(ethylenimine)-H3PO4,/sub> Systems," Electrochimica Acta, Vol. 40, 1995, pp. 2421-2424.   DOI
4 Muthuraja, P., Prakash, S., Shanmugam, V.M., Radhakrsihnan, S., and Manisankar, P., "Novel Perovskite Structured Calcium Titanate-PBI Composite Membranes for High-temperature PEM Fuel Cells: Synthesis and Characterizations," International Journal of Hydrogen Energy, Vol. 43, 2018, pp. 4763-4772.   DOI
5 Kreuer, K.D., "Proton-conducting Oxides," Annual Review of Materials Research, Vol. 33, 2003, pp. 333-359.   DOI
6 Raja, K., Raja Pugalenthi, M., and Ramesh Prabhu, M., "Investigation on SPEEK/PAI/SrTiO3-based Nanocomposite Membrane for High-temperature Proton Exchange Membrane Fuel Cells," Ionics, Vol. 25, 2019, pp. 5177-5188.   DOI
7 Vinoth Kannan, M., Kim, A.R., and Yoo, D.J., "Potential Carbon Nanomaterials as Additives for State-of-the-art Nafion Electrolyte in Proton Exchange Membrane Fuel Cells: A Concise Review," RSC Advances, Vol. 11, 2021, pp. 18351-18370.   DOI
8 Wei, Z., He, S., Liu, X., Qiao, J., Lin, J., and Zhang, L., "A Novel Environment-friendly Route to Prepare Exchange Membranes for Direct Methanol Fuel Cells," Polymer Journal, Vol. 54, 2013, pp. 1243-1250.   DOI
9 Javanbakht, M., Hooshyari, K., Enhessari, M., and Beydaghi, H., "Novel PVA/La2Ce2O7 hybrid Nanocomposite Membranes for application in Proton Exchange Membrane Fuel Cells," Iranian Journal of Hydrogen Fuel Cell, Vol. 1, 2014, pp. 105-112.
10 Uma, T., Suresh Kumar, K., Kishimoto, A., and Kimura, K., "Synthesis of Organic/inorganic Hybrid Composite Membranes and Their Structural and Properties," Materials Letters, Vol. 72, 2012, pp. 81-87.   DOI
11 Hooshyari, K., Heydari, S., Javanbakht, M., Beydaghi, H., and Enhessari, M., "Fabrication and Performance Evaluation of New Nanocomposite Membranes Based on Sulfonated Poly(phthalazinone ether ketone) for PEM Fuel Cells," RSC Advances, Vol. 10, 2020, pp. 2709-2721.   DOI
12 Hooshyari, K., Javanbakht, M., Shabanikia, A., and Enhessari, M., "Fabrication BaZrO3/PBI Based Nanocomposite as a New Proton Conducting Membrane for High-temperature Proton Exchange Membrane Fuel Cells," Journal of Power Sources, Vol. 276, 2015, pp. 62-72.   DOI
13 Matrina, P., Gayathiri, R., Raja Pugalenthi, M., Cao, G., Liu, C., and Ramesh Prabhu, M., "Nano Sulfonated Silica Incorporated SPEEK/SPVdF-HFP Polymer Blend Membrane for PEM Fuel Cell Application," Ionics, Vol. 26, 2020, pp. 3447-3458.   DOI
14 Yoo, D.J., Hyun, S.H., Kim, A.R., Gnana Kumar, G., and Nahm, K.S., "Novel Sulfonated Poly(arylene biphenylsulfone ether) Copolymers Containing Bisphenylsulfonyl Biphenyl Moiety: Structural, Thermal, Electrochemical and Morphological Characteristics," Polymer International, Vol. 60, 2011, pp. 85-92.   DOI
15 Onitshi, T., and Helgaker, T., "A Theoretical Study on Hydrogen Transport Mechanism in SrTiO3 Perovskite," International Journal of Quantum Chemistry, Vol. 112, 2012, pp. 201-207.   DOI
16 Ryu, S.K., Vinoth Kannan, M., Kim, A.R., and Yoo, D.J., "Effect of type And Stoichiometry of Fuels on the Performance of Polybenzimidazole-based Proton Exchange Membrane Fuel Cells Operating at the Temperature Range of 120-160℃," Energy, Vol. 238, 2022, pp. 121791-121795.   DOI
17 Yamazaki, Y., Jang, M.Y., and Taniyama, T., "Proton Conductivity of Zirconium Tricarboxybutylphosponate/PBI Nano Composite Membrane," Science and Technology of Advanced Materials, Vol. 5, 2004, pp. 455-459.   DOI
18 Kim, A.R., and Yoo, D.J., "A Comparative Study on Physiochemical, Thermomechanical, and Electrochemical Properties of Sulfonated Poly(ether ether ketone) Block Copolymer Membranes with and without Fe3O4 Nanoparticles," Polymers, Vol. 11, 2019, pp. 536-551.   DOI
19 Han, D., and Yoo, D.J., "Mesoporous SiO2 Mediated Polybenzimidazole Composite Membranes for HT-PEMFC Application," Transactions of the Korean Hydrogen and New Energy Society, Vol. 30, 2019, pp. 128-135.   DOI
20 Sri Abirami Saraswathi, M.S., Rana, D., Nagendran, A., and Alwarappan, S., "Custom-made PEI/exfoliated-MoS2 Nanocomposite Ultrafiltration Membranes for Separation of Bovine Serum Albumin and Humic Acid," Materials Science and Engineering: C, Vol. 83, 2018, pp. 108-114.   DOI
21 Shabanikia, A., Javanbakht, M., Amoli, H.S., Hooshyari, K., and Enhessari, M., "Effect of La2Ce2O7 on the Physicochemical Properties of Phosphoric Acid Doped Polybenzimidazole Nanocomposite Membranes for High-temperature Proton Exchange Membrane Fuel Cell," Journal of the Electrochemical Society, Vol. 161, 2014, pp. F1403-F1408.   DOI
22 Gnana Kumar, G., Kim, A.R., Nahm, K.S., Yoo, D.J., and Elizabeth, R., "High Ion and Lower Molecular Transportation of the Poly Vinylidene Fluoride-hexa Fluoro Propylene Hybrid Membranes for the High Temperature and Lower Humidity Direct Methanol Fuel Cell Applications," Journal of Power Sources, Vol. 195, 2010, pp. 5922-5928.   DOI
23 Kudakova, V., Quartarone, E., Mustarelli, P., Mangistris, A., Caponetti, E., and Saladino, M.L., "PBI-based Composite Membranes for Polymer Fuel Cells," Journal of Power Sources, Vol. 195, 2010, pp. 7765-7769.   DOI
24 Shin, S., Huang, H.H., Ishigame, M., and Iwahara, H., "Proton Conduction in the Single Crystals SrZrO3 and SrCeO3 Doped with Y2O3," Solid State Ionics, Vol. 40-41, 1990, pp. 910-913.   DOI
25 Stevens, J.R., Wieczorek, W., Randucha, D., and Jeffrey, K.R., "Proton Conducting Gel/H3PO4,/sub> Electrolytes," Solid State Ionics, Vol. 97, 1997, pp. 347-358.   DOI
26 Vinoth Kannan, M., Rama Krishnan, S., Kim, A.R., Lee, H.K., and Yoo, D.J., "Ceria Stabilized by Titanium Carbide as a Sustainable Filler in the Nafion Matrix Improves the Mechanical Integrity, Electrochemical Durability, and Hydrogen Impermeability of Proton-exchange Membrane Fuel Cells: Effects of the Filler Content," ACS Applied Materials & Interfaces, Vol. 12, 2020, pp. 5704-5716.   DOI
27 Enhessari, M., Kargar Razi, M., Etemad, L., Parviz, A., and Sakhae, M., "Structural, Optical and Magnetic Properties of the Fe2TiO5 Nanopowders," Journal of Experimental Nanoscience, Vol. 9, 2011, pp. 167-176.   DOI
28 Demirrors, A.F., and Inhofe, A., "BaTiO3, SrTiO3, CaTiO3, and BaxSr1-xTiO3 Particles: A General Approach for Monodisperse Colloidal Perovskite," Chemistry of Materials, Vol. 21, 2009, pp. 3002-3007.   DOI
29 Artimani, J.S., Ardjmand, M., Enhessari, M., and Javanbakht, M., "Polybenzimidazole/BaCe0.85Y0.15O3-δ Nanocomposites with Enhanced Proton Conductivity for High-temperature PEMFC Application," Canadian Journal of Chemistry, Vol. 97, 2019, pp. 1-21.   DOI
30 Arunbabu, D., Sannigrahi, A., and Jana, T., "Blends of Polybenzimidazole and Poly Vinylidene Fluoride for Use in Fuel Cell", The Journal of Physical Chemistry B, Vol. 112, 2008, pp. 5305-5310.   DOI
31 Phair, J.W., and Badwal, S.P.S., "Review of Proton Conductors for Hydrogen Separation," Ionics, Vol. 12, 2006, pp. 103-115.   DOI
32 Troy, T.K., Browning, N.D., and Osterloh, F.E., "Nanoscale Strontium Titanate Photocatalyst for Overall Water Splitting," ACS Nano, Vol. 6, 2012, pp. 7420-7426.   DOI
33 Kim, A.R., Vinoth Kannan, M., Lee, K.H., Chu, J.Y., and Yoo, D.J., "Enhanced Performance and Durability of Composite Membranes Containing Anatase Titanium Oxide for Fuel Cells Operating under Low Relative Humidity," International Journal of Energy Research, 2021, doi.org/10.1002/er.7477.   DOI
34 Shabanikia, A., Javanbakht, M., Amoli, H.S., and Enhessari, M., "Novel Nanocomposite Membranes Based on Polybenzimidazole and Fe2TiO5 Nanoparticles for Proton Exchange Membrane Fuel Cells," Ionics, Vol. 21, 2015, pp. 2227-2236.   DOI
35 Shabanikia, A., Javanbakht, M., Amoli, H.S., Hooshyari, K., and Enhessari, M., "Polybenzimidazole, Strontium Cerate Nanocomposites with Enhanced Proton Conductivity for Proton Exchange Membrane Fuel Cells Operating at High Temperature," Electrochimica Acta, Vol. 154, 2015, pp. 370-378.   DOI
36 Selvakumar, K., and Ramesh Prabhu, M., "Enhancing Proton Poly(benzimidazole) with Sulfonated Titania Nanocomposite Membrane for PEM Fuel Cell Applications," Macromolecular Research, Vol. 29, 2021, pp. 111-119.   DOI
37 Faharani, H., Wagiran, R., and Hamidon, M.N., "Humidity Sensors Principle, Mechanism, Fabrication Technologies: A Comprehensive Review," Sensors, Vol. 14, 2014, pp. 7881-7939.   DOI
38 Hosseinabadi, P., Hooshyari, K., Javanbakht, M., and Enhessari, M., "Synthesis and Optimization of Nanocomposite Membranes Based on SPEEK and Perovskite Nanoparticles for Polymer Electrolyte Membrane Fuel Cell," New Journal of Chemistry, Vol. 43, 2019, pp. 16232-16245.   DOI
39 Divya, K., Sri Abirami Saraswathi, M.S., Rana, D., Alwarappan, S., and Nagendran, A., "Custom-made Sulfonated Poly(ether sulfone) Nanocomposite Proton Exchange Membranes Using Exfoliated Molybdenum Disulfide Nanosheets for DMFC Applications," Polymer Journal, Vol. 147, 2018, pp. 48-55.   DOI
40 Vinoth Kannan, M., Kim, A.R., Rama Krishnan, S., Yu, Y.T., and Yoo, D.J., "Advanced Nafion Nanocomposite Membrane Embedded with Unzipped and Functionalized Graphite Nanofibers for High-temperature Hydrogen-air Fuel Cell System: The Impact of Filler on Power Density, Chemical Durability and Hydrogen Permeability of Membrane," Composites Part B: Engineering, Vol. 215, 2021, pp. 108828-108843.   DOI