• Title/Summary/Keyword: As₄O/sub 6/

검색결과 1,793건 처리시간 0.032초

Sr1-xBaxAl2O4:Eu2+, Dy3+계 축광성 형광체의 합성과 그의 발광특성 (Synthesis and Photoluminescence of the Sr1-xBaxAl2O4:Eu2+, Dy3+ Long Phosphorescence Phosphor)

  • 박진우;김정식
    • 한국세라믹학회지
    • /
    • 제43권6호
    • /
    • pp.333-337
    • /
    • 2006
  • In this study, the $Sr_{1-x}Ba_{x}Al_{2}O_{4}:Eu^{2+},Dy^{3+}$ phosphor were prepared by the solid-state reaction method and its photoluminescence properties were investigated. Starting powders of $SrCO_3,\;BaCO_3,\;and\;Al_{2}O_3$ were mixed with $Eu_{2}O_3$ as activator, $Dy_{2}O_3$ as co-activator and $B_{2}O_3$ as flux. Then, the mixed powders were heated at the temperature of $1100{\sim}1400^{\circ}C$ for 3 h under the reducing ambient atmosphere of $95%Ar+5%H_2$. The effect of Ba addition from 0.0 to 1.0 mol on photoluminescence was investigated. As the amount of Ba increased, the intensity of emission increased and the optimum long phosphorescence occurred at the amount of 0.1 mol Ba. The optimum sintering condition for long phosphorescent phosphor of $Sr_{1-x}Ba_{x}Al_{2}O_{4}:Eu^{2+},Dy^{3+}$($x=0{\sim}1.0mol$) was found at $1400^{\circ}C$. The excitation spectra showed a broad band of $250{\sim}450nm$ with maximum peak at 360 nm. The maximum peak intensity of emission spectra occurred at the range of $480{\sim}520nm$, depending on Ba content.

Removal of Heavy Metals from Wastewater using α-Fe2O3 Nanocrystals

  • Tsedenbal, Bulgan;Lee, Ji Eun;Huh, Seok Hwan;Koo, Bon Heun;Lee, Chan Gyu
    • 한국재료학회지
    • /
    • 제30권9호
    • /
    • pp.447-452
    • /
    • 2020
  • In this work, α-Fe2O3 nanocrystals are synthesized by co-precipitation method and used as adsorbent to remove Cr6+, Cd2+, and Pb2+ from wastewater at room temperature. The prepared sample is evaluated by XRD, BET surface area, and FESEM for structural and morphological characteristics. XRD patterns confirm the formation of a pure hematite structure of average particle size of ~ 40 nm, which is further supported by the FESEM images of the nanocrystals. The nanocrystals are found to have BET specific surface area of ~ 39.18 m2 g-1. Adsorption experiments are carried out for the different values of pH of the solutions, contact time, and initial concentration of metal ions. High efficiency Cr6+, Cd2+, and Pb2+ removal occur at pH 3, 7, and 5.5, respectively. Equilibrium study reveals that the heavy metal ion adsorption of the α-Fe2O3 nanocrystals followed Langmuir and Freundlich isotherm models. The Cr6+, Cd2+, and Pb2+ adsorption equilibrium data are best fitted to the Langmuir model. The maximum adsorption capacities of α-Fe2O3 nanocrystals related to Cr6+, Cd2+, and Pb2+ are found to be 15.15, 11.63, and 20 mg g-1, respectively. These results clearly suggest that the synthesized α-Fe2O3 nanocrystals can be considered as potential nano-adsorbents for future environmental and health related applications.

The Synthesis of Na0.6Li0.6[Mn0.72Ni0.18Co0.10]O2 and its Electrochemical Performance as Cathode Materials for Li ion Batteries

  • Choi, Mansoo;Jo, In-Ho;Lee, Sang-Hun;Jung, Yang-Il;Moon, Jei-Kwon;Choi, Wang-Kyu
    • Journal of Electrochemical Science and Technology
    • /
    • 제7권4호
    • /
    • pp.245-250
    • /
    • 2016
  • The layered $Na_{0.6}Li_{0.6}[Mn_{0.72}Ni_{0.18}Co_{0.10}]O_2$ composite with well crystalized and high specific capacity is prepared by molten-salt method and using the substitution of Na for Li-ion battery. The effects of annealing temperature, time, Na contents, and electrochemical performance are investigated. In XRD analysis, the substitution of Na-ion resulted in the P2-$Na_{2/3}MO_2$ structure ($Na_{0.70}MO_{2.05}$), which co-exists in the $Na_{0.6}Li_{0.6}[Mn_{0.72}Ni_{0.18}Co_{0.10}]O_2$ composites. The discharge capacities of cathode materials exhibited $284mAhg^{-1}$ with higher initial coulombic efficiency.

열화학기상증착법을 이용한 CsPbBr3 박막 성장 및 특성 연구 (A Growth and Characterization of CsPbBr3 Thin Film Grown by Thermal Chemical Vapor Deposition)

  • 김가은;김민진;류혜수;이상현
    • 마이크로전자및패키징학회지
    • /
    • 제30권2호
    • /
    • pp.71-75
    • /
    • 2023
  • 본 연구에서는 열화학기상증착법을 이용한 세슘계 무기 페로브스카이트의 성장기판에 따른 결정 구조의 변화 및 광학적 특성을 비교 분석하였다. 무기 페로브스카이트 결정은 CsBr과 PbBr2를 전구체로 사용하여 SiO2/Si와 c-Al2O3 기판 위에 동일한 조건으로 CsPbBr3를 성장하였다. 비정질 구조를 가진 SiO2 표면에서는 Cs4PbBr6-CsPbBr3 혼합상의 결정 입자가 성장하였으며, 단결정 구조인 c-Al2O3 기판에서는 CsPbBr3 (100) 결정 면방향이 우세한 단일상의 박막이 형성되었다. 광학적 분석 결과 CsPbBr3는 약 91 meV의 반치폭을 갖고 약 534 nm 중심의 발광특성을 보였으며, Cs4PbBr6-CsPbBr3 혼합구조에서는 청색 변이에 의해 523 nm의 발광 및 6.88 ns의 빠른 광 소결시간을 확인하였다. 열화학기상증착법을 이용한 페로브스카이트의 결정구조의 제어 및 광특성의 변화는 디스플레이, 태양 전지, 광센서 등 다양한 광전 소자에 적용할 수 있을 것으로 기대된다.

액상소결법에 의해 제조된 탄화규소 재료의 특성에 대한 연구 (A Study on Properties of SiC material Fabricated by Liquid Phase Sintering)

  • 이상필;곽재환;이진경
    • 한국산업융합학회 논문집
    • /
    • 제26권6_2호
    • /
    • pp.1019-1024
    • /
    • 2023
  • Ceramic materials have excellent material properties such as stability at high temperatures, chemical stability, corrosion resistance, and wear resistance, so they are applicable even in extreme environments of high temperature and pressure. In particular, silicon carbide can be applied in the field of structural ceramics due to its characteristics of high strength, hardness, corrosion resistance, and heat resistance even at high temperatures. In this study, considering the application of silicon carbide materials to next-generation turbines, silicon carbide materials were manufactured using a liquid phase sintering method. When manufacturing liquid phase sintered silicon carbide, sintering additives were added to lower the sintering temperature and densify the material. In Al2O3-SiO2, it was confirmed that the secondary product of the sintering additive was observed as a slightly dark area and was evenly distributed overall, and the fracture surface of Al2O3-SiO2 was in the form of transgranular fracture in which cracks progressed along the crystal plane, and the flexural strength for Al2O3-SiO2 was about 445.6 MPa.

(Ba1-2xNa2x)(Mg0.5-xZrxW0.5)O3 세라믹스의 마이크로파 유전특성 (Microwave Dielectric Properties of (Ba1-2xNa2x)(Mg0.5-xZrxW0.5)O3 Ceramics)

  • 윤상옥;홍창배;이윤중;김신
    • 한국전기전자재료학회논문지
    • /
    • 제30권6호
    • /
    • pp.356-360
    • /
    • 2017
  • We investigated the phase evolution, microstructure, and microwave dielectric properties of Na- and Zr-doped $Ba(Mg_{0.5}W_{0.5})O_3$ [i.e., ($Ba_{1-2x}Na_{2x})(Mg_{0.5-x}Zr_xW_{0.5})O_3$] ceramics. $BaWO_4$ as a secondary phase was observed in all compositions, and it increased as the dopant concentration increased. All specimens revealed a dense microstructure. For the composition of x=0.01, polyhedral grains were observed. As the dopant concentration increased, the densification and the grain growth were promoted by a liquid phase. The quality factor($Q{\times}f_0$) decreased remarkably, whereas the dielectric constant (${\varepsilon}_r$) tended to decrease as the dopant concentration increased. The dielectric constant, quality factor, and temperature coefficient of the resonant frequency of the composition of x=0.01 sintered at $1,700^{\circ}C$ for 1 h were 18.6, 216,275 GHz, and $-22.0ppm/^{\circ}C$, respectively.

Electrical Characteristics of Charge Trap Flash Memory with a Composition Modulated (ZrO2)x(Al2O3)1-x Film

  • Tang, Zhenjie;Zhang, Jing;Jiang, Yunhong;Wang, Guixia;Li, Rong;Zhu, Xinhua
    • Transactions on Electrical and Electronic Materials
    • /
    • 제16권3호
    • /
    • pp.130-134
    • /
    • 2015
  • This research proposes the use of a composition modulated (ZrO2)x(Al2O3)1-x film as a charge trapping layer for charge trap flash memory; this is possible when the Zr (Al) atomic percent is controlled to form a variable bandgap as identified by the valence band offsets and electron energy loss spectrum measurements. Compared to memory devices with uniform compositional (ZrO2)0.1(Al2O3)0.9 or a (ZrO2)0.92(Al2O3)0.08 trapping layer, the memory device using the composition modulated (ZrO2)x(Al2O3)1-x as the charge trapping layer exhibits a larger memory window (6.0 V) at the gate sweeping voltage of ±8 V, improved data retention, and significantly faster program/erase speed. Improvements of the memory characteristics are attributed to the special energy band alignments resulting from non-uniform distribution of elemental composition. These results indicate that the composition modulated (ZrO2)x(Al2O3)1-x film is a promising candidate for future nonvolatile memory device applications.

질소산화물 환원과 N2O 생성에 있어서 V2O5-WO3/TiO2 촉매의 V2O5 함량 영향 (The Effect of Vanadium(V) Oxide Content of V2O5-WO3/TiO2 Catalyst on the Nitrogen Oxides Reduction and N2O Formation)

  • 김진형;최주홍
    • Korean Chemical Engineering Research
    • /
    • 제51권3호
    • /
    • pp.313-318
    • /
    • 2013
  • $V_2O_5-WO_3/TiO_2$ 촉매의 질소산화물 환원반응에 있어서 $V_2O_5$ 함량이 NO 환원 및 $N_2O$ 생성에 미치는 영향을 조사하기 위하여 분말촉매를 사용한 미분반응기에서 실험 연구를 수행하였다. 고정된 비율의 $WO_3$$TiO_2$$V_2O_5$ 함량을 1에서 8 wt%까지 변화시킨 촉매에서 NO 환원반응과 암모니아 산화반응 특성이 조사되었다. $V_2O_5-WO_3/TiO_2$ 촉매에서 NO 환원 반응은 $200^{\circ}C$ 이하에서도 상당량 진행되지만, $V_2O_5$ 함량을 1 wt% 촉매의 경우 700 ppm의 NO를 99.9%이상 전환시키는 최저 반응온도가 $340^{\circ}C$에서 아주 좁은 활성 온도창으로 일어났다. 그리고 이 활성온도는 촉매의 $V_2O_5$ 함량이 증가됨에 따라 점점 저온 쪽으로 이동하여, 6 wt% 촉매의 경우 $220{\sim}340^{\circ}C$에서 높은 활성을 보였다. $V_2O_5$ 함량이 8 wt% 촉매의 경우 전 온도 구간에서 6 wt% 촉매보다 낮은 NO 환원율을 보였다. 그러나 반응온도 $340^{\circ}C$ 이상에서는 촉매의 $V_2O_5$ 함량이 증가함에 따라 NO 전환율이 감소하였다. 이는 $V_2O_5-WO_3/TiO_2$ 촉매의 NO 환원을 위한 촉매 활성점 상당 크기 이상의 $V_2O_5$ 입자와 관계되는 것으로 판단되며 촉매 입자가 클수록 $320^{\circ}C$ 이상에서 암모니아 산화에 의해 발생되는 $N_2O$ 생성을 고려하여야 한다. $V_2O_5-WO_3/TiO_2$ 촉매는 배기가스 중의 질소산화물 제거를 위하여 현재 통상적으로 $350{\sim}450^{\circ}C$의 영역에서 운전되고 있으나, 고온 영역에선 2차 오염물인 $N_2O$의 발생을 피할 수 없고 에너지 소비량이 많으므로, $250{\sim}320^{\circ}C$의 저온 영역에서 적합한 촉매로써 $V_2O_5$ 함량이 높은 $V_2O_5-WO_3/TiO_2$ 촉매의 사용이 권장되었다.

잉크젯 프린팅 공정을 통해 제작된 BaTiO3 Capacitor의 유전특성 분석 (Dielectric Property Analysis of BaTiO3 Capacitor Manufactured by Inkjet Printing Process)

  • 김유진;이경영;이인곤;홍익표;김지훈
    • 한국전기전자재료학회논문지
    • /
    • 제35권6호
    • /
    • pp.610-615
    • /
    • 2022
  • BaTiO3 is one of the ferroelectric materials with excellent dielectric properties such as high dielectric constant, low dielectric loss, and is widely used for the manufacturing of capacitors, piezoelectric converters, microsensors, and ferroelectric memories. Inkjet printing is a technology which uses digital and contactless methods which significantly improves flexibility associated with material and structural design, reducing manufacturing costs. Therefore, the top and bottom electrodes, BaTiO3 ink, and photocurable resin were all printed by an inkjet to produce a BaTiO3 capacitor. The properties of the printed thin film were analyzed. It was confirmed that the photocurable resin ink was well-infiltrated between the BaTiO3 powder particles printed by inkjet. The dielectric properties of the capacitor such as dielectric constant which varies in accordance with frequency, polarization and tunability that changes with voltage, were measured.

입자 크기 분포에 따른 0.01Pb(Mg1/2W1/2)O3-0.41Pb(Ni1/3Nb2/3)O3-0.35PbTiO3-0.23PbZrO3 후막의 미세구조 및 압전특성 (Piezoelectric properties and microstructure of 0.01Pb(Mg1/2W1/2)O3-0.41Pb(Ni1/3Nb2/3)O3-0.35PbTiO3-0.23PbZrO3thick film with particle size distribution)

  • 문희규;송현철;김상종;최지원;강종윤;윤석진
    • 센서학회지
    • /
    • 제17권6호
    • /
    • pp.418-424
    • /
    • 2008
  • The PZT based piezoelectric thick films prepared by screen printing method have been mainly used as a functional material for MEMS applications due to their compatibility of MEMS process. However the screen printed thick films generally reveal poor electrical and mechanical properties because of their porous microstructure. To improve microstructure we mixed attrition milled powder with ball milled powder of 0.01Pb$(Mg_{1/2}W_{1/2})O_3$-0.41Pb$(Ni_{1/3}Nb_{2/3})O_3$-$0.35PbTiO_3$-$0.23PbZrO_3$+0.1 wt% ${Y_2}{O_3}$+1.5 wt% ZnO composition. By mixing 25 % of attrition milled powder and 75 % of ball milled powder, the broadest particle size distribution was obtained, leading to a dense thick film with crack-free microstructure and improved dielectric properties. The X-ray diffraction analysis revealed that the film was in wellcrystallized perovskite phase. The remanent polarization was increased from $13.7{\mu}C/cm^2$ to $23.3{\mu}C/cm^2$ at the addition of 25 % attrition milled powder.