• Title/Summary/Keyword: Artificial vegetation island (AVI)

Search Result 6, Processing Time 0.016 seconds

The Activity and Structure of Bacterial Community within Artificial Vegetation Island (AVI) (인공 수초재배섬에서 세균의 활성과 세균 군집 구조)

  • Jeon, Nam-Hui;Park, Hae-Kyung;Byeon, Myeong-Seop;Choi, Myung-Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.676-682
    • /
    • 2007
  • The bacterial number, extracellular enzyme activities and structure of bacterial community which are major constituent of aquatic ecosystem within the artificial vegetation island (AVI) were compared to those of the nearby pelagic lake waters in order to evaluate the possibility of the AVI as a eco-technological measure for water quality improvement and restoration of littoral zone in man-made reservoirs. There was not a significant difference in the total number of bacteria, but the number of active (viable) bacteria within the AVI was about 0.7 to 4.1 times higher than nearby pelagic lake water. The ratio of the number of active bacteria versus the total number of bacteria was also higher in the AVI than nearby pelagic lake water. The activities of ${\beta}$-glucosidase and phosphatase were 1.0 to 13.1 and 0.8 to 7.3 times higher respectively in the AVI than nearby pelagic lake water, showing that microorganisms were more active within the AVI. The bacterial communities of the two waters, examined by FISH method, did not indicate a clear difference in the springtime when the growth of macrophytes was immature, but during summer and fall it showed a clear difference indicating the formation of distinct bacterial community within the AVI compared to nearby lake water. From the results of this study, we conclude that AVI can contribute to make up the littoral ecosystem which show rapid cycling of matters through active detritus food chain in the dam reservoirs which have unstable aquatic ecosystem due to short hydraulic residence time and to strengthen the self-purification capacity of the lake.

Effects of Artificial Vegetation Island on Fish Fauna (인공수초섬이 어류상에 미치는 영향)

  • Byeon, Myeong-Seop;Park, Hae-Kyung;Jeon, Nam-Hui;Choi, Myeong-Jae;Kong, Dong-Soo
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.1
    • /
    • pp.103-109
    • /
    • 2007
  • To investigate the effects of artificial vegetation island (AVI) on fish distribution, we compared fish fauna from artificial vegetation island (AVI) area, which installed in 2000, natural vegetation area (NVA) and vegetation-free area (VFA) at Kyungan Stream area of Lake Paldang from Jul. to Nov., 2005. Results showed that 11 families 23 genera 24 fish species were distributed in the AVI and NVA. Squalidus japonicus coreanus, a small-size fish which generally lives at the downstream, dominated absolutely in the individual numbers. However, only 6 families 11 genera 12 species of fishes caught at the VFA, and dominant fishes were Hemibarbus labeo and Erythroculter erythropterus, a medium to large-size migratory fishes which live in mid-depth of water column. The dominance index was high at the AVI (0.778) and NVA (0.868), whereas the diversity index and evenness index were high at the VFA. Fish distribution at AVI was similar to that of the NVA in numbers of species, indicating that the AVI could playa role as spawning and inhabitation zone to a variety of fishes. We believe that AVI may be used for a restoration of the damaged and disturbed littoral ecosystem.

The Growth and Nutrient Removal Efficiency of Hydrophytes at an Artificial Vegetation Island, Lake Paldang (팔당호 인공 수초재배섬에서 수생식물의 생장 및 영양염류 제거 효율)

  • Choi, Myeong-Jae;Byeon, Myeong-Seop;Park, Hae-Kyung;Jeon, Nam-Hui;Yoon, Suk-Hwan;Kong, Dong-Soo
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.3
    • /
    • pp.348-355
    • /
    • 2007
  • We investigated temporal changes of composition, habitat area, growth rate and elements content of hydrophytes at the artificial vegetation island (AVI) in Kyungan Stream within Lake Paldang. We also assessed nutrient removal rate through cutting off the emergent part of hydrophytes. The kinds of hydrophytes have increased from four species (P. australis, P. japonica, T. angustifolia and the Z. latifolia) at initial stage of installation to more than 29 species for 6-year operation. P. japonica was most dominant species at the AVI in 2006. The habitat area of have increased about 2.5 times compared to the initial planting area, occupying 63% of AVI's vegetation area. The incoming species of S. fluviatilis and B. frondosa have adapted successively and expanded habitat area in the AVI. The relative growth rate of P. japonica and P. australis was highest in spring sprouting period. Their hights and weights have increased until summer, by the time they were cutting off the emergent part. They started regrowth immediately after cutting and continued to grow until September and withered away in November. The carbon contents of P. japonica and P. australis have increased during growth phase, on the contrary, the nitrogen and phosphorus contents have decreased. By cutting off and removing the emergent part (leaves and branches) of hydrophytes twice from AVI, $17.6gN/m^2/y$ of nitrogen and $1.3gP/m^2/y$ of phosphorus was removed from AVI in 2006.

Changes of Zooplankton Community in an Artificial Vegetation Island of Lake Paldang (팔당호에서 인공 수초재배섬 설치에 따른 동물플랑크톤 군집 변화)

  • You, Kyung-A;Park, Hae-Kyung;Byeon, Myeong-Seop;Jeon, Nam-Hui;Choi, Myung-Jae;Yun, Seok-Hwan;Kong, Dong-Soo
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.3
    • /
    • pp.339-347
    • /
    • 2007
  • Zooplankton community dynamics were studied after establishment of an artificial vegetation island (AVI) in Lake Paldang, from April 2005 to November 2006. There were distinct seasonal and inter-annual changes of total zooplankton abundance at the survey site. Total zooplankton abundance rapidly increased in spring and fall, while it remained low throughout winter. During summer, the dynamics of zooplankton community seemed to be largely affected by hydrological parameters such as, precipitation and inflow. Total zooplankton abundance and biomass below AVI was much higher than that of pelagic zone (L1) in Lake Paldang. Copepoda and cladocera represented the main bulk of the zooplankton community from summer to fall at the both sites. Copepods were more dominant at AVI area, while cladocera were more dominant at pelagic zone (L1). Water quality, prey and habitat condition, species competition between zooplankton seemed to play important roles in dominance of the copepoda and cladocera in zooplankton community at AVI area. Our results conclude that artificial vegetation island provide the stable habitat and besides phytoplankton, diverse food to zooplankton, and consequently influence the diversity and richness of zooplankton community.

Bacterial Abundances and Enzymatic Activities under Artificial Vegetation Island in Lake Paldang (팔당호에 설치된 인공식물섬에서의 세균 수와 체외효소 활성도의 변화)

  • Byeon, Myeong-Seop;Yoo, Jae-Jun;Kim, Ok-Sun;Choi, Seung-Ik;Ahn, Tae-Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.35 no.4 s.100
    • /
    • pp.266-272
    • /
    • 2002
  • For analyzing function of a microbial ecosystem which was created under the artificial vegetation island (AVI) installed at Lake Paldang, zooplankton and bacterial numbers and exoenzyme activities (${\beta}$-glucosidase and phosphatase) were measured biweekly from 3 November 2()()1 to 20 April 2002 at AVI site and control site. Under the AVI, the water quality was worse than control site in term of comparing the environmental parameters. But, zooplankton number of AVI site was 25 times higher than that of control site. Respiratory active bacterial numbers were 3-8 times higher at AVI site. In addition, enzymatic activities were higher at AVI site than those of control site. These results suggest that the zooplankton-phytoplankton-bacteria relationships are closely coupled with each other and organic materials are eliminated by respiration of zooplankton and bacterial activities.

Comparison of the Growth of Hydrophytes, Aquatic Biota and Absorption of Nutrient depending on the Planting Mat Type of Artificial Vegetation Island (인공수초재배섬 식생기반재 종류에 따른 물질 흡착량 및 생물상, 식재식물 성장 비교)

  • Choi, Myung-Jae;Park, Hae-Kyung;Byeon, Myeong-Seop;Jeon, Nam-Hui;Yun, Seok-Hwan
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.1
    • /
    • pp.52-60
    • /
    • 2010
  • We investigated temporal changes of growth of hydrophytes, aquatic biota and absorption of nutrient depending on planting mat type (synthetic fiber, coconut fiber) of artificial vegetation island (AVI) through pilot test using AVI miniatures in Kyungan Stream area of Lake Paldang. There were not significant differences of the water quality parameters (DO, pH, conductivity, turbidity, temperature), phytoplankton and zooplankton abundance among AVI miniatures and control station. The benthic macroinvertebrates showed most individual numbers in the miniature which was made by synthetic fiber and planted with Phragmites australis. The average and maximum height of hydrophytes in AVI miniatures was similar except one miniature where Phragmites australis was planted in synthetic fiber mat and grew more slowly. The adsorbed amount of nutrients and microbes in coconut fiber mat were larger than those in synthetic fiber mat regardless of trophic state of installed waterbody. The continuous increase of adsorbed amount of nutrients and microbes of coconut fiber mat for 8 months in an oligotrophic lake indicates that coconut fiber mat is suitable for the planting mat of AVI in an oligotrophic lake where nutrients are limited for growth of hydrophytes.