Changes of Zooplankton Community in an Artificial Vegetation Island of Lake Paldang

팔당호에서 인공 수초재배섬 설치에 따른 동물플랑크톤 군집 변화

  • You, Kyung-A (Han-River Environment Research Center, National Institute of Environment Research) ;
  • Park, Hae-Kyung (Han-River Environment Research Center, National Institute of Environment Research) ;
  • Byeon, Myeong-Seop (Han-River Environment Research Center, National Institute of Environment Research) ;
  • Jeon, Nam-Hui (Han-River Environment Research Center, National Institute of Environment Research) ;
  • Choi, Myung-Jae (Han-River Environment Research Center, National Institute of Environment Research) ;
  • Yun, Seok-Hwan (Han-River Environment Research Center, National Institute of Environment Research) ;
  • Kong, Dong-Soo (Han-River Environment Research Center, National Institute of Environment Research)
  • 유경아 (국립환경과학원 한강물환경연구소) ;
  • 박혜경 (국립환경과학원 한강물환경연구소) ;
  • 변명섭 (국립환경과학원 한강물환경연구소) ;
  • 전남희 (국립환경과학원 한강물환경연구소) ;
  • 최명재 (국립환경과학원 한강물환경연구소) ;
  • 윤석환 (국립환경과학원 한강물환경연구소) ;
  • 공동수 (국립환경과학원 한강물환경연구소)
  • Received : 2007.02.21
  • Accepted : 2007.04.10
  • Published : 2007.05.30

Abstract

Zooplankton community dynamics were studied after establishment of an artificial vegetation island (AVI) in Lake Paldang, from April 2005 to November 2006. There were distinct seasonal and inter-annual changes of total zooplankton abundance at the survey site. Total zooplankton abundance rapidly increased in spring and fall, while it remained low throughout winter. During summer, the dynamics of zooplankton community seemed to be largely affected by hydrological parameters such as, precipitation and inflow. Total zooplankton abundance and biomass below AVI was much higher than that of pelagic zone (L1) in Lake Paldang. Copepoda and cladocera represented the main bulk of the zooplankton community from summer to fall at the both sites. Copepods were more dominant at AVI area, while cladocera were more dominant at pelagic zone (L1). Water quality, prey and habitat condition, species competition between zooplankton seemed to play important roles in dominance of the copepoda and cladocera in zooplankton community at AVI area. Our results conclude that artificial vegetation island provide the stable habitat and besides phytoplankton, diverse food to zooplankton, and consequently influence the diversity and richness of zooplankton community.

Keywords

References

  1. 국가수자원관리종합정보시스템,http:νwww.wamis.go.kr (accessed Nov. 2006)
  2. 김범철, 김재옥, 전만식, 황순진, 소양호 동 . 식물플랑크톤의 계절변동, 한국육수학회지,32, pp. 127-134 (1999)
  3. 박혜경, 이현주, 김은경, 정동일, 팔당호 조류발생 특성 및 수질환경인자의 통계적 분석,한국물환경학회지,21(6), pp. 584-594 (2005a)
  4. 박혜경, 공동수, 변명섭, 전남희, 최명재, 유경아, 강필구, 수초재배섬 운영 . 관리사업 보고서, 한강수계 팔당호 수질개선사업,한강물환경연구소, 한강수계관리위원회 pp. 27-149 (2005b)
  5. 박혜경, 공동수, 변명섭, 전남희, 최명재, 윤석환, 유경아, 강필구, 수초재배섬 운영 . 관리사업 보고서, 한강수계 팔당호 수질개선사업, 한강물환경연구소, 한강수계관리위원회 , pp. 37-121 (2006)
  6. 유경아, 낙동강의 수환경과 동물플랑크톤의 동태학 연구, 건국대학교 석사학위논문,pp. 1-89 (2005)
  7. 조규송, 한국산 담수동물플랑크톤도감, 아카데미서적,pp. 1-387 (1993)
  8. 환경부, 수질오염공정시험방법,pp. 292-293 (2004)
  9. Agbeti, M. D. and Smol, J. O., Winter limnology: Comparison of physical, Chemical and biological characteristics in two temperatate lakes during lakes during ice over, Hydrobiol, 304, pp. 221-234 (1995) https://doi.org/10.1007/BF02329316
  10. Andersen, A. and Hessen, D.O., Carbon, nitrogen, and phosphorus contents of freshwater zooplankton, Limnol. Oceanogr., 36, pp. 807-814 (1991) https://doi.org/10.4319/lo.1991.36.4.0807
  11. Azam, F., Fenchel, T., Field, J. G., Meyeriel, L. A. and Thingstad, F., The ecological role of water-column microbes in the sea, Mar. Eco!. Prog. Ecol., 10, pp. 257-263 (1983) https://doi.org/10.3354/meps010257
  12. Balcer, M. D., Korda, N. L. and Dodson, S. I., Zooplankton of the great lakes, A guide to the identification and ecology of the common crustacean species, The university of Wisconsin Press (1984)
  13. Bloem, J. and Bar-Gilissen, M. J. B., Bacterial activity and protozoan grazing potential in stratified lake, Limnol. Oceanoger., 34, pp. 297-309 (1989) https://doi.org/10.4319/lo.1989.34.2.0297
  14. Carrick, H. J. and Fahnenstiel, G. I., Biomass, size structure and composition of phototrophic and heterotrophic nanoflagellate communities in Lakes Huron and Michigan, Can J. Fish. Aquat. Sci., 46, pp. 1922-1928 (1989) https://doi.org/10.1139/f89-242
  15. Culver, D. A., Boucherle, M. M., Bean, D. J. and Flethcer, J. W., Biomass of freshwater crustacean zooplankton from Length-Weight regressions, Can. J. Fish. Aquat. Sci., 42, pp. 1380-1390 (1985) https://doi.org/10.1139/f85-173
  16. Downing, .J. A. and Rigler, F. H. R., A manual on methods for the assesssment of secondary productivity in freshwaters, Blackwell Scientific Publications, pp. 247-249 (1984)
  17. Dumont, H. J., Velde, L. V. De. and Dumont, S., The dry weight estimate of biomass in a selection of Cladocera, Copepoda, and Rotifera from the plankton, periphyton, and benthos of continental waters, Oecologia, 91, pp. 75-97 (1975)
  18. Finlay, B. J., Clarke, K. J., Cowling, A. J., Hindle, R. M., Rogerson, A. and Berninger, U. G., On the abundance and distribution of protozoa and their food in a productive freshwater pond, Eur. J. Protistol., 23, pp. 205-217 (1988) https://doi.org/10.1016/S0932-4739(88)80037-3
  19. Fulton, R. S., Resistance to blue-green toxins by Bosmina longirostris, J. Plankton Res., 10, pp. 771-778 (1988) https://doi.org/10.1093/plankt/10.4.771
  20. Fulton, R. S. and Paerl, H. W., Toxic and inhibitory effects of the blue-green alga Microcystis aeruginosa in herbivorous zooplankton, J. Plankton Res., 9, pp. 837-855 (1987) https://doi.org/10.1093/plankt/9.5.837
  21. Gilbert, J. J. and Sternberger, R. S., Control of Keratella populations by interference competition from Daphnia, Limnol. Oceanogr., 30, pp. 180-188 (1985) https://doi.org/10.4319/lo.1985.30.1.0180
  22. Hall, D. T., Threlkeld, S. T., Burns, C. W. and Crowley, P. H., The size-efficiency hypothesis and the size structure of zooplankton communities, Annual Review of Ecology and Systematics, 7, pp. 177-208 (1976) https://doi.org/10.1146/annurev.es.07.110176.001141
  23. Hwang, S. J. and Heath, R. T., Zooplankton bacterivory at coastal and offshore sites of Lake Erie, Journal of plankton Research, 21, pp. 699-710 (1999) https://doi.org/10.1093/plankt/21.4.699
  24. Keckeis, S., Baranyi, C., Hein, T., Holarek, C., Riedler, P. and Schiemer, F., The significance of zooplankton grazing in a floodplain system of the River Danube, J. Plankton Res., 25, pp. 243-253 (2003) https://doi.org/10.1093/plankt/25.3.243
  25. Kim, H. W., Hwang, S. J. and Joo, G. J., Zooplankton grazing on bacteria and phytoplankton in the regulated Nakdong River(Korea), Journal of plankton Research, 22, pp. 1559-1577 (2000) https://doi.org/10.1093/plankt/22.8.1559
  26. McManus, G. B. and Fuhrmann, J. A., Control of marine bacterioplankton populations: measurement and significance of grazing, Hydrobiol., 159, pp. 51-62 (1988) https://doi.org/10.1007/BF00007367
  27. Mizuno Toshihiko, An illustrated guide to freshwater zooplankton in Japan, Toukai University Publications (1991)
  28. Pace, M. L. and Orcutt, J. D., The relative importance of protozoans, rotifers, and crustaceans in a freshwater zooplankton community, Limnol. Oceanogr., 26(5), pp. 822-830 (1981) https://doi.org/10.4319/lo.1981.26.5.0822
  29. Rassoulzadegan, F., Laval-Peuto, M. and Sheldon, R. W., Partioning of the food ratio of marine ciliates between picoplankton and nanoplankton, Hydrobiol., 159, pp. 75-88 (1988) https://doi.org/10.1007/BF00007369
  30. Sheldon, R. W., Nival, P. and Rassouleadegan, F., An experimental investigation of a fiagellate-ciliate-copepod food chain with some observation relevant to the linear biomass hypothesis, Limnol., Oceacogr., 31, pp. 184-188 (1986) https://doi.org/10.4319/lo.1986.31.1.0184
  31. Sherr, E. B. and Sherr, B. F., Bacterivory and herbivory: key roles of phagotrophic protists in pelagic food webs, Microb. Ecol., 28, pp. 223-235 (1994) https://doi.org/10.1007/BF00166812
  32. Shimatani, Y., The effect and ecosystem of an artificial vegetated island, Ukishima, in Lake Kasumigaura, Proc. Korean Japan Joint Symposium on Ecological Engineering, 39, p. 44 (1996)
  33. Smetacek, V., The annual cycle of protozooplankton in the Kiel Bight, Mar. BioI., 63, pp. 1-11 (1981) https://doi.org/10.1007/BF00394657
  34. Sommer, U., Gliwicz, Z. M., Lampert, W. and Duncan, A, The PEG-model of seasonal succession of planktonic events in fresh waters, Arch. Hydrobiol., 106, pp. 433-471 (1986)
  35. Sternberger, R. S., A guide to rotifers of the Laurentian Great Lakes, EPA-600, 4-79-021 (1979)
  36. Weisse, T., The annual cycle of heterotrophic freshwater nanoflagellates: role of bottom-up versus top-down control, J. Plankton Res., 13, pp. 167-185 (1991) https://doi.org/10.1093/plankt/13.1.167