The Activity and Structure of Bacterial Community within Artificial Vegetation Island (AVI)

인공 수초재배섬에서 세균의 활성과 세균 군집 구조

  • Jeon, Nam-Hui (Han River Environment Research Center, National Institute of Environmental Research) ;
  • Park, Hae-Kyung (Han River Environment Research Center, National Institute of Environmental Research) ;
  • Byeon, Myeong-Seop (Han River Environment Research Center, National Institute of Environmental Research) ;
  • Choi, Myung-Jae (Han River Environment Research Center, National Institute of Environmental Research)
  • 전남희 (국립환경과학원 한강물환경연구소) ;
  • 박혜경 (국립환경과학원 한강물환경연구소) ;
  • 변명섭 (국립환경과학원 한강물환경연구소) ;
  • 최명재 (국립환경과학원 한강물환경연구소)
  • Received : 2007.07.19
  • Accepted : 2007.09.12
  • Published : 2007.09.30

Abstract

The bacterial number, extracellular enzyme activities and structure of bacterial community which are major constituent of aquatic ecosystem within the artificial vegetation island (AVI) were compared to those of the nearby pelagic lake waters in order to evaluate the possibility of the AVI as a eco-technological measure for water quality improvement and restoration of littoral zone in man-made reservoirs. There was not a significant difference in the total number of bacteria, but the number of active (viable) bacteria within the AVI was about 0.7 to 4.1 times higher than nearby pelagic lake water. The ratio of the number of active bacteria versus the total number of bacteria was also higher in the AVI than nearby pelagic lake water. The activities of ${\beta}$-glucosidase and phosphatase were 1.0 to 13.1 and 0.8 to 7.3 times higher respectively in the AVI than nearby pelagic lake water, showing that microorganisms were more active within the AVI. The bacterial communities of the two waters, examined by FISH method, did not indicate a clear difference in the springtime when the growth of macrophytes was immature, but during summer and fall it showed a clear difference indicating the formation of distinct bacterial community within the AVI compared to nearby lake water. From the results of this study, we conclude that AVI can contribute to make up the littoral ecosystem which show rapid cycling of matters through active detritus food chain in the dam reservoirs which have unstable aquatic ecosystem due to short hydraulic residence time and to strengthen the self-purification capacity of the lake.

Keywords

Acknowledgement

Supported by : 한강수제관리위원회

References

  1. 공동수, 윤일병, 류재근, 팔당호의 물수지 및 수문특성, 한국육수학회지, 29(1), pp. 51-64 (1996)
  2. 권오병, 인공식물섬 조성에 의한 수생태계 개선효과에 관한 연구, 박사학위논문, 강원대학교 (2006)
  3. 박혜경, 이현주, 김은경, 정동일, 팔당호 조류발생 특성 및 수질환경인자의 통계적 분석, 한국물환경학회지, 21(6), pp. 584-594 (2005)
  4. 박혜경, 정원화, 팔당호의 장기간 식물플랑크톤 발생 추이, 한국물환경학회지, 19(6), pp. 673-684 (2003)
  5. 변명섭, 팔당호에서 수초재배섬에 의한 수환경 개선효과에 관한 연구, 박사학위논문, 강원대학교 (2007)
  6. 석정현, 홍선희, 김굉규, 안태석, 소양호에서 활성세균수의 계절적. 수직적 변화, 한국미생물학회지, 37(1), pp. 80-84 (2001)
  7. 심두섭, 안태석, 소양호에서 동물 플랑크톤의 섭식작용에 관한 연구, 한국미생물학회지, 30, pp. 129-133 (1992)
  8. 안태석, 박현진, 21세기의 새로운 환경기술, 생태기술 국제 심포지움 호수연안복원과 인공식물섬 발표논문집, pp. 129-146 (2001)
  9. 유경아, 박혜경, 변명섭, 전남희, 최명재, 윤석환, 공동수, 팔당호에서 인공 수초재배섬 설치에 따른 동물플랑크톤 군집 변화, 한국물환경학회지, 23(3), pp. 339-347 (2007)
  10. 조강현, 팔당호에서 대형수생식물에 의한 물질생산과 질소와 인의 순환, 박사학위논문, 서울대학교 (1992)
  11. 최승익, 소양호의 세균 개체수와 활성도 변화에 관한 연구, 박사학위논문, 강원대학교 (1996)
  12. 최정현, 박석순, 퇴적물내의 산소와 물 수송에 관한 습지 식물의 역할, 한국육수학회지, 37(4), pp. 436-447 (2004)
  13. 홍선희, 담수생태계에서 세균군집구조의 분석, 박사학위논문, 강원대학교 (2001)
  14. Amann, R., Ludwig, W. and Schleifer, K. H., Phylogenetic and in situ detection of individual microbial cells without cultivation, Microbiol. Rev., 59, pp. 143-169 (1995)
  15. APHA, Standard methods for the examination of water and wastewater, American Public Health Association, Washington D.C. USA (2005)
  16. Byeon, M. S., Yoo, J. J., Kim, O. S., Choi, S. I. and Ahn, T. S., Bacterial abundances and enzymatic activities under artificial vegetation island in Lake Paldang, Kor J. Limnol., 35(4), pp. 266-272 (2002)
  17. Chrost, R. J., Characterization and significance of $\beta$-glucosidase activity in lake water, Limnol. Oceanogr., 34, pp. 660-672 (1989) https://doi.org/10.4319/lo.1989.34.4.0660
  18. Chrost, R. J. and Overbeck, J., Kinetics of alkaline phosphatase activity and phosphorus availability for phytoplankton and bacterioplankton in Lake Plu$\beta$see, Microb. Ecol., 13, pp. 229-248 (1987) https://doi.org/10.1007/BF02025000
  19. Cother, J. and Heath, R. T., Potential phosphate release from phosphomonoesters by acid phosphatase in a bog lake, Arch. Hydrobiol., 111, pp. 329-338 (1988)
  20. Daisaku, Y., Nobuyasu, Y. and Masao, N., Improved direct viable count procedure for quantitative estimation of bacterial viability in freshwater environments, Appl. Envion. Microbiol., 66, pp. 5544-5548 (2000) https://doi.org/10.1128/AEM.66.12.5544-5548.2000
  21. Glockner, F. O., Bernhard, M. F. and Aman, R., Bacterio-plankton compositions of Lakes and Ocenas: A first comparison based on fluorescence in situhybridization, Appl. Envion. Microbiol., 65, pp. 721-726 (1999)
  22. Hobbie, J. E., Daley. R. F. and Japer, S., Use of nucleopore filters for counting bacteria by fluorescence microscopy, Appl. Environ. Microbiol., 33, pp. 1225-1228 (1977)
  23. Hugenholtz, P., Goebel, B. M. and Pace, N. R., Impact of culture-independent studies on the emerging phylogenetic view of bacterial community, J. Bacteriology, 180, pp. 4765-4774 (1998)
  24. Kogure, K., Attachment of aquatic bacteria-Overview, In T. Hattori et al.(eds) Recent advances in microbial ecology, Japan Scientific Societies Press, Tokyo, pp. 131-134 (1989)
  25. Lampert, W. and Sommer, U., Limnoecology, The ecology of lakes and streams, Oxford University press, New York, pp. 292-293 (1997)
  26. Lansing, M. P., Harley, J. P. and Klein, D. A., Microbiology, 6th Ed. A Division of the McGraw-Hill Companies (2005)
  27. Lehman, R. M. and O'Connell, S. P., Comparison of extracellular enzyme activities and community composition of attached and free-Living bacteria porous medium columns, Appl. Environ. Microbiol., 68, pp. 1569-1575 (2002) https://doi.org/10.1128/AEM.68.4.1569-1575.2002
  28. Mitsch, W. J. and Gosselink, J. G., Wetlands, Van Nostrand Reinhold, New York (1993)
  29. Mueller, G., Sartorls, J., Nakamura, K., and Boutwell, J., Ukishima, floating islands, or Schwimmkampen Lakeline, pp. 18-26 (1996)
  30. Munster, U. and Chrost, R. J., Origin composition and microbial utilization of dissolved organic matter, pp. 8-46 in Overbeck. J. and Chrost R. J.(eds), Aquatic Microbial Ecology; Biochemical and Molecular Approaches. Springer Verlag, New York (1990)
  31. Sasser, C. E. and Gosselink, J. G., Vegetation and primary production in a floating fresh marsh in Louisiana, Aquat. Bot., 20, pp. 245-255 (1984) https://doi.org/10.1016/0304-3770(84)90090-1
  32. Shimatani, Y., The effect and ecosystem of an artificial vegetated island, Ukishima, in Lake Kasumigaura, Proc. Korean Japan Joint Symposium on Ecological Engineering (1996)
  33. Ulrike, B., Falk, W., Dieter, B., Elke, Z. and Jakob, P., Members of a readily enriched $\beta$-Proteobacterial clade are common in surface waters of a humic lake, Appl. Envion. Microbiol., 69, pp. 6550-6559 (2003) https://doi.org/10.1128/AEM.69.11.6550-6559.2003
  34. Wetzel, R. G., Compound from wetlands; Complexation, inactivation, and reactivation of surface-bound and extracellular enzymes, Verh. Internat Verein.. Limnol., 25, pp. 122-128 (1993)