Bacterial Abundances and Enzymatic Activities under Artificial Vegetation Island in Lake Paldang

팔당호에 설치된 인공식물섬에서의 세균 수와 체외효소 활성도의 변화

  • Byeon, Myeong-Seop (National Institute of Environmental Research) ;
  • Yoo, Jae-Jun (Department of Environmental Science, Kangwon national University) ;
  • Kim, Ok-Sun (Department of Environmental Science, Kangwon national University) ;
  • Choi, Seung-Ik (Environmental Research Institute, kangwon National University) ;
  • Ahn, Tae-Seok (Department of Environmental Science, Kangwon national University)
  • Published : 2002.12.31

Abstract

For analyzing function of a microbial ecosystem which was created under the artificial vegetation island (AVI) installed at Lake Paldang, zooplankton and bacterial numbers and exoenzyme activities (${\beta}$-glucosidase and phosphatase) were measured biweekly from 3 November 2()()1 to 20 April 2002 at AVI site and control site. Under the AVI, the water quality was worse than control site in term of comparing the environmental parameters. But, zooplankton number of AVI site was 25 times higher than that of control site. Respiratory active bacterial numbers were 3-8 times higher at AVI site. In addition, enzymatic activities were higher at AVI site than those of control site. These results suggest that the zooplankton-phytoplankton-bacteria relationships are closely coupled with each other and organic materials are eliminated by respiration of zooplankton and bacterial activities.

팔당호에 설치된 인공식물섬에서 미생물의 역할을 알아보기 위하여 동물플랑크톤 군집 크기, 총세균수, 활성세균수, ${\beta}$-glucosidase와 phosphatase의 체외효소활성도를 2001년 11월 3일부터 2002년 4월까지 격주로 인공식물섬이 설치된 지역과 바깥지역을 대상으로 조사 분석하였다 인공식물섬 아래에서는 일반적으로 측정하는 환경요인들은 대조구보다 수질이 나쁜 것으로 나타났다. 그러나, 동물 플랑크톤의 수는 대조구보다 굉균 25배, 활성세균의 수는 평균 3-8배, 그리고 체외효소활성도는 훨씬 높은 값을 보였다. 이러한 결과는 인공식물섬에서는 동물플랑크톤-식물플랑크톤-수초-세균의 밀접한 관계가 존재하고, 이 관계에 의하여 동물플랑크톤과 세균의 호흡, 분해작용으로 유기물이 제거되는 것으로 판단되었다.

Keywords

References

  1. Ahn, T.S. and D.S. Kong. 1998. Application of ecotechnologyfor nutrient removal. Frontier in biology:In Chou, C.H. and Shao, K.T. (eds). The challengesof Biodiversity, Biotechnology and SustainableAgriculture, Academia Sinica, Taipei. pp. 209-216.
  2. Ahn, T.S., S.I. Choi and K.S. Joh. 1993. Phosphataseactivities in Lake Soyang, Korea. Verh. Internat.Verein. Limnol. 25: 183-186.
  3. APHA. 2000. Standard Methods for the examinationof water and wastewater. 20th ed. APHA. N.Y.
  4. Azam, F. and B.B. Cho. 1987. Bacterial utilization oforganic matter in the sea. Ecology of microbialcommunities. In Fletcher, M., Grey, T.R.G andJones, J.G (eds), 'Ecology of Microbials Communities',Cambridge University, Cambridge. pp. 216-281.
  5. Barman, T.E. 1969. Enzyme Handbook, vol. 2 SpringerVerlag, Berlin. pp. 928.
  6. Choi, S.I., T.S. Ahn and B.C. Kim. 1992. Degradationrates of organic phosphate in Lake Soyang. Kor.J. Microbiol. 30: 113-118.
  7. Chrost, R.J. 1989. Characterization and significanceof $\beta$-glucosidase activity in lake water. Limnol.Oceanogr. 34: 660-672.
  8. Chrost, R.J. 1991. Environmental control of the synthesisand activity of aquatic microbial extoenzymes.In Chrost R.J. (ed.), Microbial enzymes inaquatic environments, Springer Verlag, N.Y. pp.29-59.
  9. Chrost, R.J. and H. Rai. 1994. Bacterial secondaryproduction. In Chrost R.J. (ed.), Microbial ecologyof Lake Plussee, Springer Verlag, N.Y. pp. 92-117.
  10. Chróst, R.J. and J. Overbeck. 1987. Kinetics of alkalinephosphatase activity and phosphorus availabilityfor phytoplankton and bacterioplanktonin lake Plussee (north German eutrophic lake).Microb. Ecol. 13: 229-248.
  11. Currie, D.J., E. Bentzen and J. Kalff. 1986. Does algabacteria phosphorus partitioning vary among lakes.A comparative study of orthophosphate uptakeand alkaline phosphatase activity in freshwater.Can. J. Fish. Aquat. Sci. 43: 311-318.
  12. Environmental Management Cooperation. 2000.Report of artificial vegetation island management.EMC.
  13. Fletcher, M. 1996. Bacterial attachment in aquaticenvironments: A diversity of surfaces and adhesionstrategies. In Fletcher, M. (ed.), 'BacterialAdhesion'. John wiley & Sons, N.Y., pp. 1-24.
  14. Guede, H. 1988. Direct and indirect influence of crustaceanzooplankton on bacterioplankton of LakeConstance. Hydrobiologia. 159: 63-73.
  15. Hobbie, J.E., R.J. Daley and S. Japer. 1977. Use of anucleopore filters for counting bacteria by fluorescencemicroscopy. Appl. Environ. Microbiol. 33:225-1228.
  16. Hunik, J.H., M.P. Hoogen, W. Boer, M. Smit and J.Tramper. 1993. Quantitative determination of thespatial distribution of Nitrosomonas europaea and Nitrobacter agilis cells immobilized in K Carrageenangel beads by a specific fluorescent antibodylabelling technique. Appl. Environ. Microbiol.59: 1951-1954.
  17. Jansson, M., H. Olsson and K. Peterson. 1988. Phosphatase:Origin, characteristics and function inlakes. Hydrobiologia 170: 157-176.
  18. Kim, J.H. and K.H. Cho. 1996. Water quality improvementby aquatic macrophyte: A case study inLake Paldangho. Proceeding of Korea-JapanJoint Symposium on Ecological Engineering. pp.3-17.
  19. Kim, K.K., S.H. Hong, D.J. Kim, S.I. Choi, and T.S.Ahn. 1999. The change of bacterial numbers and$\beta$-glucosidase activities by the size fraction ofDOM in Lake Soyang. Kor. J. Microbiol. 35: 35-40.
  20. Park, H.J., O.B. Kwon and T.S. Ahn. 2001. Waterquality improvement by artificial floating island.J. Korean Env. Res. Reveg. Tech. 4: 90-97.
  21. Rodriguez, G.G., D. Phipps, K. Ishiguro and H.F.Ridgway. 1992. Use of a fluorescent redox probefor direct visualization of actively respiring bacteria.Appl. Envriron. Microbiol. 58: 1801-1808.
  22. Sim, D.S. and T.S. Ahn. 1992. On the feeding behaviorof zooplankton in Lake Soyang. Kor. Jour.Microbiol. 30: 129-133.
  23. Shimatani Y. 1996. The effect and ecosystem of anartificial vegetated island, Ukishima, in Lake Kasumigaura.Proc. Korean-Japan Joint Symposiumon Ecological Engineering. pp. 39-44.
  24. Vandevivere, P. and D.L. Kirchman. 1993. Attachmentsimulates exopolysaccharide synthesis by abacterium. Appl. Envion. Microbiol. 59: 3280-3286.
  25. Wetzel, R.G. 1983. Limnology, 2nd ed. CBS CollegePublishing. pp. 519-614.
  26. Wetzel, R.G. 1991. Extracellular enzymatic interactions:Storage, redistribution, and interspecificcommunication. In Chrost, R.J. (eds) 'Microbialenzymes in aquatic environments'. SpringerVerlag. 1991. pp. 6-28.
  27. Wolverton, B.C. 1987. Aquatic plants for water treatmentand resource recovery: An overview, InReddy, K.R. and Smith, W.H. (eds) 'Aquatic plantsfor water treatment and resource recovery'.Magnolia Publishing Inc., Orlando, FL., pp. 141-152.