• Title/Summary/Keyword: Artificial skin lipid

Search Result 6, Processing Time 0.018 seconds

Design of Solid Lipid Nanoparticles to Improve Penetration of Niacinamide through Artificial Skin Tissue (나이아신아마이드의 인공피부조직 투과 개선을 위한 고형지질나노입자의 설계 연구)

  • Yeo, Sooho
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.2
    • /
    • pp.133-138
    • /
    • 2021
  • In this study, Niacinamide (NI) was loaded into solid lipid nanoparticles (SLNs) and skin permeability was evaluated to improve skin permeability of NI, which was a skin whitening substance. NI was able to effectively load within SLN with a double-melting emulsification method, producing stable particles with average particle sizes of 263.30 to 436.93 nm and a zeta potential of -34.77 to -57.60 mV. Artificial skin tissue (SkinEthicTM RHE) derived from skin keratinocytes derived from human epidermal tissue was used for the skin permeation study of NI. Skin transmittance and deposition experiments of NI confirmed that all SLN formulations improved skin transmittance and deposition rates of NI, approximately 5.4 ~ 7.6 and 9.5 ~ 20.8 improvement over SLN applications. Therefore, SLN manufactured in this study have shown sufficient results to improve the skin permeability of the functional whitening substance, NI.

A Study on the Design of Stearic Acid-Based Solid Lipid Nanoparticles for the Improvement of Artificial Skin Tissue Transmittance of Serine (Serine 의 인공피부조직 투과 개선을 위한 Stearic Acid 기반 고형지질나노입자의 설계 연구)

  • Yeo, Sooho
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.2
    • /
    • pp.179-184
    • /
    • 2021
  • Stratum corneum known as a skin barrier, which maintains water in skin, is the outer layer of the skin. Natural moisturizing factors (NMF) are one of the constituents in stratum corneum and amino acids are the highest components among NMF. In this study, we designed stearic acid-based solid lipid nanoparticles (SLNs) for improved skin penetration of serine (Ser). Ser-capsulated SLN was manufactured by double-melting emulsification method. The mean particle size and zeta potential of SLNs were 256.30 ~ 416.93 nm and -17.60 ~ -35.27 mV, respectively. The higher the degree of hydrophobicity or hydrophilicity of emulsifiers, the smaller the particle size and the higher the stability and capsulation rate. In addition, skin penetration was conducted using SkinEthicTM RHE which is one of the reconstructed human epidermis models. The results of Ser penetration demonstrated that all SLNs enhanced than serine solution. The amount of enhanced Ser penetration from SLNs were approximately 4.1 ~ 6.2 times higher than that from Ser solution. Therefore, Ser-loaded SLN might be a promising drug delivery system for moisturizing formulation in cosmeceutical.

A Study on the Design of Solid Lipid Nanoparticles for enhanced Skin Penetration of Pantothenic Acid (Pantothenic acid의 피부 투과 개선을 위한 고형지질나노입자설계 연구)

  • Yeo, Sooho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.4
    • /
    • pp.915-921
    • /
    • 2021
  • In this study, we designed pantothenic acid (PA) loaded solid lipid nanoparticles (SLNs) for enhanced skin penetration of PA that is used for moisturizing agent in cosmetics with hydrophilic property. SLNs were prepared using various lipids and surfactants. PA loaded SLNs were fabricated using double emulsion method. The fabricated PA loaded SLNs assessed particle size, polydispersity index, zeta potential, loading capacity. Skin penetration study was conducted using artificial skin tissue originated from human epidermis as one of the reconstructed human epidermis models. The mean particle size and zeta potential of SLNs ranged from 192.15 nm to 369.87 nm and -21.39 mV to -40.55 mV, respectively. The loading efficiency and loading amount of PA loaded SLNs were ranged from 44.36% to 57.16% and 12.60% to 16.36%, respectively. The results of penetration demonstrated that all SLNs improved PA skin penetration. In addition, the amount of PA from SLNs were approximately 3.8 - 8.8 times higher than that from PA solution. Therefore, the fabricated SLNs demonstrated the enhancment of skin penetration of PA. Particularly, the SLN, which used glyceryl behenate and Span 60, showed optimal skin penetration of PA.

Skin Barrier Function Enhancement Effect about Ceramide Liquid Crystal Emulsion: Similar Ratio of Skin Lipid Composition (피부 지질 조성 모사 Ceramide 액정 에멀젼의 피부 장벽 강화 효과 확인에 관한 연구)

  • Han, Ji Hye;Lee, Ju Yeon;Lee, Kwan Hyoung;Kim, Hee Sun;Park, Chang Yeol;Maeng, Ji Hye;So, Ji Min;Nam, Gae Won;Kim, Sang Chul
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.1
    • /
    • pp.49-56
    • /
    • 2021
  • In this study, a liquid crystal emulsion with a composition ratio similar to the skin lipid composition was manufactured using ceramide, glycolipids, cholesterol, and fatty acids, and a polarized microscope was used to identify liquid crystal particles in the formulation, and a cryso-SEM was used to confirm the formation of a multilayer structure. The above samples were stored at room temperature for one month and the liquid crystal structure was continuously maintained through microscopic observation. In addition, a cream composition containing liquid crystal emulsion was manufactured, and the efficiency of ceramide skin penetration was confirmed using three-dimensional artificial skin. Clinical trials were conducted using the cream composition and the results of clinical trials on skin barrier improvement were confirmed by measuring skin moisture retention (skin hydration) and transepidermal water loss (T EWL) of subjects compared to general emulsion.

A Study on the Formation of Lamellar Liquid Crystalline Using Skin Mimicking Surfactant (피부모사체 계면활성제를 사용한 라멜라 액정의 생성에 관한 연구)

  • Kim, In-Young;Nam, Eun-Hee;Shin, Moon-Sam
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.484-495
    • /
    • 2020
  • This study is a mixed surfactant (MimicLipid-MSM1000) that forms the same structure as that of the stratum corneum, sucrose distearate, polyglyceryl-2 dioleate, fermented squalane, ergosterol, 10-hydroxystearic acid, mixture consisting of was synthesized. When using 2~5 wt% of this mixed surfactant, it was possible to make an artificial skin mimetic that forms a multi-layer lamellar structure of 5~30 layers. An emulsion was prepared using this mixed surfactant, and a multi-layered lamellar phase was formed and analyzed mechanically. The appearance of this surfactant was a light brown hard wax, the hydrophilic lipophilic balance (HLB) was 12.53, the critical parameter value was 0.987, and the acid value was 0.13. Stability according to pH change was also stable in acidic (3.8), neutral (7.2) and alkaline (10.8). The particle size of the liquid crystal was found to be the most stable maltese cross lamellar crystalline droplet at 5~25mm. The size of the emulsified particles according to the change in the speed of the homo agitator is 2500 rpm (17.9mm±2.6mm), 3500rpm (12.5mm±2.1mm), 4500rpm (6.2mm±1.8mm) particles were formed. Liquid crystal forming particles were observed through a polarization microscope, and the formation structure of the liquid crystal was precisely analyzed with a scanning electron microscope (cryo-SEM). As an application field, it is expected that it will be widely applicable to the development of various prescriptions, such as various skin care cosmetics, makeup care cosmetics, and scalp protection cosmetics, by using a skin-mimicking surfactant.