• 제목/요약/키워드: Artificial neural network prediction

검색결과 888건 처리시간 0.03초

실온하강신간 예측을 위한 신경망 모델의 개발 (Development of Artificial Neural Network Model for the Prediction of Descending Time of Room Air Temperature)

  • 양인호;김광우
    • 설비공학논문집
    • /
    • 제12권11호
    • /
    • pp.1038-1047
    • /
    • 2000
  • The objective of this study is to develop an optimized Artificial Neural Network(ANN) model to predict the descending time of room air temperature. For this, program for predicting room air temperature and ANN program using generalized delta rule were collected through simulation for predicting room air temperature. ANN was trained and the ANN model having the optimized values-learning rate, moment, bias, number of hidden layer, and number of neuron of hidden layer was presented.

  • PDF

Performance Comparison Analysis of Artificial Intelligence Models for Estimating Remaining Capacity of Lithium-Ion Batteries

  • Kyu-Ha Kim;Byeong-Soo Jung;Sang-Hyun Lee
    • International Journal of Advanced Culture Technology
    • /
    • 제11권3호
    • /
    • pp.310-314
    • /
    • 2023
  • The purpose of this study is to predict the remaining capacity of lithium-ion batteries and evaluate their performance using five artificial intelligence models, including linear regression analysis, decision tree, random forest, neural network, and ensemble model. We is in the study, measured Excel data from the CS2 lithium-ion battery was used, and the prediction accuracy of the model was measured using evaluation indicators such as mean square error, mean absolute error, coefficient of determination, and root mean square error. As a result of this study, the Root Mean Square Error(RMSE) of the linear regression model was 0.045, the decision tree model was 0.038, the random forest model was 0.034, the neural network model was 0.032, and the ensemble model was 0.030. The ensemble model had the best prediction performance, with the neural network model taking second place. The decision tree model and random forest model also performed quite well, and the linear regression model showed poor prediction performance compared to other models. Therefore, through this study, ensemble models and neural network models are most suitable for predicting the remaining capacity of lithium-ion batteries, and decision tree and random forest models also showed good performance. Linear regression models showed relatively poor predictive performance. Therefore, it was concluded that it is appropriate to prioritize ensemble models and neural network models in order to improve the efficiency of battery management and energy systems.

신경망을 이용한 냉간 단조품의 기하학적 형상 및 연성파괴 예측 (The Prediction of Geometrical Coniguration and Ductile Fracture using the Artificial Neural Network for a Cold Forged Product)

  • 김동진
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.201-205
    • /
    • 1996
  • This paper suggests the scheme to simultaneously accomplish prediction of fracture initation and geometrical configuration of deformation in metal forming processes using the artificial neural network. A three-layer neural network is used and a back propagation algorithm is adapted to train the network. The Cockcroft-Latham criterion is used to estimate whether fracture occurs during the deformation process. The geometrical configuration and the value of ductile fracture are measured by finite element method. The prediction of network and numerical results of simple upsetting are compared. The proposed scheme has successfully predicted the geometrical configuration and fracture initiation.

  • PDF

빅데이터를 활용한 인공지능 주식 예측 분석 (Stock prediction analysis through artificial intelligence using big data)

  • 최훈
    • 한국정보통신학회논문지
    • /
    • 제25권10호
    • /
    • pp.1435-1440
    • /
    • 2021
  • 저금리 시대의 도래로 인해 많은 투자자들이 주식 시장으로 몰리고 있다. 과거의 주식 시장은 사람들이 기업 분석 및 각자의 투자기법을 통해 노동 집약적으로 주식 투자가 이루어졌다면 최근 들어 인공지능 및 데이터를 활용하여 주식 투자가 널리 이용되고 있는 실정이다. 인공지능을 통해 주식 예측의 성공률은 현재 높지 않아 다양한 인공지능 모델을 통해 주식 예측률을 높이는 시도를 하고 있다. 본 연구에서는 다양한 인공지능 모델에 대해 살펴보고 각 모델들간의 장단점 및 예측률을 파악하고자 한다. 이를 위해, 본 연구에서는 주식예측 인공지능 프로그램으로 인공신경망(ANN), 심층 학습 또는 딥 러닝(DNN), k-최근접 이웃 알고리즘(k-NN), 합성곱 신경망(CNN), 순환 신경망(RNN), LSTM에 대해 살펴보고자 한다.

인공신경회로망을 이용한 탄산가스 아크 용접의 잔류응력 예측에 관한 연구 (A Study of Predicting Method of Residual Stress Using Artificial Neural Network in $CO_2$ Arc Welding)

  • 조용준;이세헌;엄기원
    • Journal of Welding and Joining
    • /
    • 제13권3호
    • /
    • pp.77-88
    • /
    • 1995
  • A prediction method for determining the welding residual stress by artificial neural network is proposed. A three-dimensional transient thermomechanical analysis has been performed for the CO$_{2}$ arc welding using the finite element method. The first part of numerical analysis performs a three-dimensional transient heat transfer analysis, and the second part then uses the results of the first part and performs a three-dimensional transient thermo-elastic-plastic analysis to compute transient and residual stresses in the weld. Data from the finite element method are used to train a backpropagation neural network to predict the residual stress. Architecturally, the fully interconnected network consists of an input layer for the voltage and current, a hidden layer to accommodate the ailure mechanism mapping, and an output layer for the residual stress. The trained network is then applied to the prediction of residual stress in the four specimens. It is concluded that the accuracy of the neural network predicting method is fully comparable with the accuracy achieved by the traditional predicting method.

  • PDF

A Study of Predicting Method of Residual Stress Using Artificial Neural Network in $CO_2$Arc welding

  • Cho, Y.;Rhee, S.;Kim, J.H.
    • International Journal of Korean Welding Society
    • /
    • 제1권2호
    • /
    • pp.51-60
    • /
    • 2001
  • A prediction method for determining the welding residual stress by artificial neural network is proposed. A three-dimensional transient thermo-mechanical analysis has been performed for the $CO_2$ arc welding using the finite element method. The first part of numerical analysis performs a three-dimensional transient heat transfer analysis, and the second part then uses the results of the first part and performs a three-dimensional transient thermo-elastic-plastic analysis to compute transient and residual stresses in the weld. Data from the finite element method are used to train a back propagation neural network to predict the residual stress. Architecturally, the fully interconnected network consists of an input layer for the voltage and current, a hidden layer to accommodate the failure mechanism mapping, and an output layer for the residual stress. The trained network is then applied to the prediction of residual stress in the four specimens. It is concluded that the accuracy of the neural network predicting method is fully comparable with the accuracy achieved by the traditional predicting method.

  • PDF

Voltage Stability Prediction on Power System Network via Enhanced Hybrid Particle Swarm Artificial Neural Network

  • Lim, Zi-Jie;Mustafa, Mohd Wazir;Jamian, Jasrul Jamani
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.877-887
    • /
    • 2015
  • Rapid development of cities with constant increasing load and deregulation in electricity market had forced the transmission lines to operate near their threshold capacity and can easily lead to voltage instability and caused system breakdown. To prevent such catastrophe from happening, accurate readings of voltage stability condition is required so that preventive equipment and operators can execute security procedures to restore system condition to normal. This paper introduced Enhanced Hybrid Particle Swarm Optimization algorithm to estimate the voltage stability condition which utilized Fast Voltage Stability Index (FVSI) to indicate how far or close is the power system network to the collapse point when the reactive load in the system increases because reactive load gives the highest impact to the stability of the system as it varies. Particle Swarm Optimization (PSO) had been combined with the ANN to form the Enhanced Hybrid PSO-ANN (EHPSO-ANN) algorithm that worked accurately as a prediction algorithm. The proposed algorithm reduced serious local minima convergence of ANN but also maintaining the fast convergence speed of PSO. The results show that the hybrid algorithm has greater prediction accuracy than those comparing algorithms. High generalization ability was found in the proposed algorithm.

The application of neural network system to the prediction of pollutant concentration in the road tunnel

  • Lee, Duck-June;Yoo, Yong-Ho;Kim, Jin
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2003년도 Proceedings of the international symposium on the fusion technology
    • /
    • pp.252-254
    • /
    • 2003
  • In this study, it was purposed to develop the new method for the prediction of pollutant concentration in road tunnels. The new method was the use of artificial neural network with the back-propagation algorithm which can model the non-linear system of tunnel environment. This network system was separated into two parts as the visibility and the CO concentration. For this study, data was collected from two highway road tunnels on Yeongdong Expressway. The tunnels have two lanes with one-way direction and adopt the longitudinal ventilation system. The actually measured data from the tunnels was used to develop the neural network system for the prediction of pollutant concentration. The output results from the newly developed neural network system were analysed and compared with the calculated values by PIARC method. Results showed that the prediction accuracy by the neural network system was approximately five times better than the one by PIARC method. ill addition, the system predicted much more accurately at the situation where the drivers have to be stayed for a while in tunnels caused by the low velocity of vehicles.

  • PDF

Support Vector Machine을 이용한 기업부도예측 (Bankruptcy Prediction using Support Vector Machines)

  • 박정민;김경재;한인구
    • Asia pacific journal of information systems
    • /
    • 제15권2호
    • /
    • pp.51-63
    • /
    • 2005
  • There has been substantial research into the bankruptcy prediction. Many researchers used the statistical method in the problem until the early 1980s. Since the late 1980s, Artificial Intelligence(AI) has been employed in bankruptcy prediction. And many studies have shown that artificial neural network(ANN) achieved better performance than traditional statistical methods. However, despite ANN's superior performance, it has some problems such as overfitting and poor explanatory power. To overcome these limitations, this paper suggests a relatively new machine learning technique, support vector machine(SVM), to bankruptcy prediction. SVM is simple enough to be analyzed mathematically, and leads to high performances in practical applications. The objective of this paper is to examine the feasibility of SVM in bankruptcy prediction by comparing it with ANN, logistic regression, and multivariate discriminant analysis. The experimental results show that SVM provides a promising alternative to bankruptcy prediction.

Prediction of the price for stock index futures using integrated artificial intelligence techniques with categorical preprocessing

  • Kim, Kyoung-jae;Han, Ingoo
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 1997년도 추계학술대회발표논문집; 홍익대학교, 서울; 1 Nov. 1997
    • /
    • pp.105-108
    • /
    • 1997
  • Previous studies in stock market predictions using artificial intelligence techniques such as artificial neural networks and case-based reasoning, have focused mainly on spot market prediction. Korea launched trading in index futures market (KOSPI 200) on May 3, 1996, then more people became attracted to this market. Thus, this research intends to predict the daily up/down fluctuant direction of the price for KOSPI 200 index futures to meet this recent surge of interest. The forecasting methodologies employed in this research are the integration of genetic algorithm and artificial neural network (GAANN) and the integration of genetic algorithm and case-based reasoning (GACBR). Genetic algorithm was mainly used to select relevant input variables. This study adopts the categorical data preprocessing based on expert's knowledge as well as traditional data preprocessing. The experimental results of each forecasting method with each data preprocessing method are compared and statistically tested. Artificial neural network and case-based reasoning methods with best performance are integrated. Out-of-the Model Integration and In-Model Integration are presented as the integration methodology. The research outcomes are as follows; First, genetic algorithms are useful and effective method to select input variables for Al techniques. Second, the results of the experiment with categorical data preprocessing significantly outperform that with traditional data preprocessing in forecasting up/down fluctuant direction of index futures price. Third, the integration of genetic algorithm and case-based reasoning (GACBR) outperforms the integration of genetic algorithm and artificial neural network (GAANN). Forth, the integration of genetic algorithm, case-based reasoning and artificial neural network (GAANN-GACBR, GACBRNN and GANNCBR) provide worse results than GACBR.

  • PDF