• Title/Summary/Keyword: Artificial intelligence (AI)

Search Result 1,968, Processing Time 0.027 seconds

Artificial Intelligence and the Virtual Multi-Door ODR Platform for Small Value Cross-Border e-Commerce Disputes

  • Chung, Yongkyun
    • Journal of Arbitration Studies
    • /
    • v.29 no.3
    • /
    • pp.99-119
    • /
    • 2019
  • In recent times, the volume of cross-border e-commerce has witnessed an upward trend and has been accompanied by increased disputes, with cross-border e-commerce being characterized mainly by low value and large volume issues. For this reason, Online Dispute Resolution (ODR) was formed to carry out dispute resolutions in cross-border e-commerce. A virtual multi-door ODR platform for small value, cross-border disputes in e-commerce is then proposed in this paper. For a couple of decades, researchers have tried to employ Artificial Intelligence (AI) to Law. However, it turns out that they were faced with a couple of obstacles to integrate AI to Law since it is highly difficult to program AI to process the common sense of a human being. For example, AI cannot assimilate the affective side of a human being, and it is problematic to integrate a human being's common sense into the AI system. Considering this situation, this study puts forward an ODR model for cross-border e-commerce in the evolutionary perspective.

Artificial Intelligence in Aviation (항공분야의 인공지능)

  • Hyun, WooSeok
    • Korean journal of aerospace and environmental medicine
    • /
    • v.29 no.2
    • /
    • pp.59-66
    • /
    • 2019
  • Artificial Intelligence (AI) born in 1956 is a general term that implies the use of a computer to make intelligent machines with minimal human intervention. AI is a topic dominating diverse discussions on the future of professional employment, change in the social standard and economic performance. In this paper, I describe fundamental concepts underlying AI and their significance to various fields including aviation and medicine. I highlight issues involved and describe the potential impacts and challenges to the industrial fields. While many benefits are expected in human life with AI integration, problems are needed to be identified and discussed with respect to ethical issues and the future roles of professionals and specialists for their wider application of AI.

Artificial Intelligence in Neuroimaging: Clinical Applications

  • Choi, Kyu Sung;Sunwoo, Leonard
    • Investigative Magnetic Resonance Imaging
    • /
    • v.26 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • Artificial intelligence (AI) powered by deep learning (DL) has shown remarkable progress in image recognition tasks. Over the past decade, AI has proven its feasibility for applications in medical imaging. Various aspects of clinical practice in neuroimaging can be improved with the help of AI. For example, AI can aid in detecting brain metastases, predicting treatment response of brain tumors, generating a parametric map of dynamic contrast-enhanced MRI, and enhancing radiomics research by extracting salient features from input images. In addition, image quality can be improved via AI-based image reconstruction or motion artifact reduction. In this review, we summarize recent clinical applications of DL in various aspects of neuroimaging.

AI Processor Technology Trends (인공지능 프로세서 기술 동향)

  • Kwon, Youngsu
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.5
    • /
    • pp.121-134
    • /
    • 2018
  • The Von Neumann based architecture of the modern computer has dominated the computing industry for the past 50 years, sparking the digital revolution and propelling us into today's information age. Recent research focus and market trends have shown significant effort toward the advancement and application of artificial intelligence technologies. Although artificial intelligence has been studied for decades since the Turing machine was first introduced, the field has recently emerged into the spotlight thanks to remarkable milestones such as AlexNet-CNN and Alpha-Go, whose neural-network based deep learning methods have achieved a ground-breaking performance superior to existing recognition, classification, and decision algorithms. Unprecedented results in a wide variety of applications (drones, autonomous driving, robots, stock markets, computer vision, voice, and so on) have signaled the beginning of a golden age for artificial intelligence after 40 years of relative dormancy. Algorithmic research continues to progress at a breath-taking pace as evidenced by the rate of new neural networks being announced. However, traditional Von Neumann based architectures have proven to be inadequate in terms of computation power, and inherently inefficient in their processing of vastly parallel computations, which is a characteristic of deep neural networks. Consequently, global conglomerates such as Intel, Huawei, and Google, as well as large domestic corporations and fabless companies are developing dedicated semiconductor chips customized for artificial intelligence computations. The AI Processor Research Laboratory at ETRI is focusing on the research and development of super low-power AI processor chips. In this article, we present the current trends in computation platform, parallel processing, AI processor, and super-threaded AI processor research being conducted at ETRI.

Review of the Application of Artificial Intelligence in Blasting Area (발파 분야에서의 인공지능 활용 현황)

  • Kim, Minju;Ismail, L.A.;Kwon, Sangki
    • Explosives and Blasting
    • /
    • v.39 no.3
    • /
    • pp.44-64
    • /
    • 2021
  • With the upcoming 4th industrial revolution era, the applications of artificial intelligence(AI) and big data in engineering are increasing. In the field of blasting, there have been various reported cases of the application of AI. In this paper, AI techniques, such as artificial neural network, fuzzy logic, generic algorithm, swarm intelligence, and support vector machine, which are widely applied in blasting area, are introduced, The studies about the application of AI for the prediction of ground vibration, rock fragmentation, fly rock, air overpressure, and back break are surveyed and summarized. It is for providing starting points for the discussion of active application of AI on effective and safe blasting design, enhancing blasting performance, and minimizing the environmental impact due to blasting.

A Systematic Mapping Study on Artificial Intelligence Tools Used in Video Editing

  • Bieda, Igor;Panchenko, Taras
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.312-318
    • /
    • 2022
  • From the past two eras, artificial intelligence has gained the attention of researchers of all research areas. Video editing is a task in the list that starts leveraging the blessing of Artificial Intelligence (AI). Since AI promises to make technology better use of human life although video editing technology is not new yet it is adopting new technologies like AI to become more powerful and sophisticated for video editors as well as users. Like other technologies, video editing will also be facilitated by the majestic power of AI in near future. There has been a lot of research that uses AI in video editing, yet there is no comprehensive literature review that systematically finds all of this work on one page so that new researchers can find research gaps in that area. In this research we conducted a statically approach called, systematic mapping study, to find answers to pre-proposed research questions. The aim and objective of this research are to find research gaps in our topic under discussion.

Effective E-Learning Practices by Machine Learning and Artificial Intelligence

  • Arshi Naim;Sahar Mohammed Alshawaf
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.1
    • /
    • pp.209-214
    • /
    • 2024
  • This is an extended research paper focusing on the applications of Machine Learing and Artificial Intelligence in virtual learning environment. The world is moving at a fast pace having the application of Machine Learning (ML) and Artificial Intelligence (AI) in all the major disciplines and the educational sector is also not untouched by its impact especially in an online learning environment. This paper attempts to elaborate on the benefits of ML and AI in E-Learning (EL) in general and explain how King Khalid University (KKU) EL Deanship is making the best of ML and AI in its practices. Also, researchers have focused on the future of ML and AI in any academic program. This research is descriptive in nature; results are based on qualitative analysis done through tools and techniques of EL applied in KKU as an example but the same modus operandi can be implemented by any institution in its EL platform. KKU is using Learning Management Services (LMS) for providing online learning practices and Blackboard (BB) for sharing online learning resources, therefore these tools are considered by the researchers for explaining the results of ML and AI.

The Regulation of AI: Striking the Balance Between Innovation and Fairness

  • Kwang-min Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.9-22
    • /
    • 2023
  • In this paper, we propose a balanced approach to AI regulation, focused on harnessing the potential benefits of artificial intelligence while upholding fairness and ethical responsibility. With the increasing integration of AI systems into daily life, it is essential to develop regulations that prevent harmful biases and the unfair disadvantage of certain demographics. Our approach involves analyzing regulatory frameworks and case studies in AI applications to ensure responsible development and application. We aim to contribute to ongoing discussions around AI regulation, helping to establish policies that balance innovation with fairness, thereby driving economic progress and societal advancement in the age of artificial intelligence.

Imagination into Reality - Artificial Intelligence (AI) Marketing Changes

  • Rhie, Jin-Hee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.12
    • /
    • pp.183-189
    • /
    • 2019
  • After the fourth industrial revolution, a business that utilizes Artificial Intelligence (AI) is expanding centered around IT industries and it is expected that the quality of AI services will improve. This study aims to examine changes in marketing through the advance and development of AI and to establish and apply marketing strategies to respond to future market changes. Based on existing data, the development of AI technology was examined and looked into changes in marketing and counter strategies through cases overseas and South Korea. Artificial Intelligence technology has a close impact on our lives, changing our lives, and thus changing consumer patterns, perceptions, and consumer culture. In the future, innovative changes in AI technologies will require government policies, the vision of the corporation, and it is necessary to establish longer-term success strategies. Collaboration between companies and industries is also important.

Case Study on Artificial Intelligence and Risk Management - Focusing on RAI Toolkit (인공지능과 위험관리에 대한 사례 연구 - RAI Toolkit을 중심으로)

  • Sunyoung Shin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.1
    • /
    • pp.115-123
    • /
    • 2024
  • The purpose of this study is to contribute to how the advantages of artificial intelligence (AI) services and the associated limitations can be simultaneously overcome, using the keywords AI and risk management. To achieve this, two cases were introduced: (1) presenting a risk monitoring process utilizing AI and (2) introducing an operational toolkit to minimize the emerging limitations in the development and operation of AI services. Through case analysis, the following implications are proposed. First, as AI services deeply influence our lives, the process are needed to minimize the emerging limitations. Second, for effective risk management monitoring using AI, priority should be given to obtaining suitable and reliable data. Third, to overcome the limitations arising in the development and operation of AI services, the application of a risk management process at each stage of the workflow, requiring continuous monitoring, is essential. This study is a research effort on approaches to minimize limitations provided by advancing artificial intelligence (AI). It can contribute to research on risk management in the future growth and development of the related market, examining ways to mitigate limitations posed by evolving AI technologies.